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ABSTRACT

Some scholars known as offensive realists claim that in the uncertainty
of world politics, trust and cooperation between states is extremely
unlikely. Others, such as defensive realists, claim that rational states
are capable of finding ways to counteract the complications created by
misperceptions and distrust, and to reduce uncertainty to levels where
it no longer inhibits cooperation. In this paper, we construct a formal
model to show how in some situations cooperation between states is
indeed very unlikely: even in the presence of minor misperceptions,
states fail to cooperate. We then ask whether diplomacy (modeled as
cheap talk) is able to remedy the failure. We show that in many sit-
uations, allowing the countries to communicate prior to taking their
actions does not enable them to cooperate.
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Introduced by Herz (1950) and Butterfield (1951), the security dilemma in
international relations theory describes the obstacles that two countries face
in achieving peace and cooperation. In recent years, debate over the scope
and severity of the security dilemma has resurfaced amongst various fac-
tions of scholars that fall within the realist school of thought. On the one
hand, offensive realists like Mearsheimer (2001) argue that in the anarchy of
world politics, fears about the intentions of rival states may drive even two
security-seeking states away from cooperation. On the other hand, defensive
realists like Glaser (1995) respond to the pessimism of offensive realists by
questioning the strength of the connections between anarchy, uncertainty,
and cooperation. In particular, defensive realists claim that two security-
seeking states should not find it difficult to cooperate if they recognize each
other as security-seeking, and while uncertainty about a state’s motivations
can complicate matters, uncertainty alone does not imply the dire predic-
tions of offensive realism (Glaser 1997).1

An important contribution to the security dilemma debate is a paper by
Kydd (1997a), which to our knowledge is the first formal treatment of incom-
plete information in the security dilemma. This paper laid the foundations
for a book titled Trust and Mistrust in International Relations, in which
Kydd (2005) argues that Bayesian game theory is well-suited to analyze the
problems of trust that are at the heart of the security dilemma. Kydd (2005)
proposes a new theory, which he calls Bayesian realism, as an alternative
to offensive and defensive realism. In Bayesian realism, states have different
preferences for revising the status quo and the level of trust between them
is variable, as opposed to offensive and defensive realism in which states are
always security-seeking. Using a signaling framework, Kydd (2005) shows
that trustworthy states are often able to separate themselves from untrust-
worthy ones; and, in a dynamic setting, he shows how rational states can
use costly gestures to reduce distrust to manageable levels, even when it is
very high to start.

In this paper, we build on Kydd’s (2005) premise that problems of trust
are at the heart of the security dilemma. However, our model of uncer-
tainty and distrust in the security dilemma differs in several important
ways from Kydd’s (2005) model and other previous work. First, while Kydd

1 Other perspectives, such as those of motivational realists, are presented by Schweller (1996),
and Kydd (1997b), who provides a thorough review of the arguments appearing in the
literature.
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(2005) analyzes situations with common knowledge of the fundamentals and
uncertainty about countries’ preferences, we focus explicitly on uncertainty
about the strategic fundamentals. In our model, countries receive infor-
mative but noisy signals regarding the advantage of unilateral defection.
Specifically, we consider a situation where there is some (small) uncertainty
about whether the strategic situation is described by a Prisoner’s Dilemma
or by a Stag Hut. Previous theory, like Kydd’s (2005), has modeled situa-
tions like World War II, where revisionist Germany is dissatisfied with an
arrangement where the international distribution of benefits is incommen-
surate with its material and military status. Our model, alternatively, is of
the security dilemma as it arises in situations like World War I (see, e.g.,
Van Evera, 1999, Ch. 7). Here, the relevant uncertainty is about the state
of military technology, the relative benefits to offensive military action, and
the incentives to reciprocate cooperation.

Second, our model supports the argument of offensive realists that even
when states know that they are each security-seeking, trust can be so low
that cooperation becomes impossible. We show how two countries fail to
cooperate even when each is certain that the other is trustworthy, and they
are both certain that they are both trustworthy. One might wonder where
the uncertainty enters our model if the countries can be this certain. We show
that this uncertainty enters the model in the higher order beliefs of the
countries: although a country may be certain that both countries are trust-
worthy, and certain that the other country is also certain of this, it may
not be certain that the other country is certain that it is certain . . . and
so on, that both are trustworthy.2 Rather than taking this kind of higher
order uncertainty literally, we view it as a metaphor for the deep fears,
suspicions, and doubts that leaders have about how trustworthy their coun-
terparts are, and how their counterparts may perceive their own perceptions
of the strategic environment — exactly the kinds of fears and suspicions
that lead offensive realists to question the possibility of cooperation in the
anarchy of world politics.3

A number of previous papers have made a point similar to some we make.
For example, Chassang and Padró i Miquel (2009a) study the role of fear,

2 Here we think of trustworthy states as those whose best response to cooperation in a given
strategic setting is to reciprocate cooperation.

3 Under this interpretation, our argument is somewhat related to Butterfield’s (1951) irreducibil-
ity dilemma that argues that no leader can ever know what is in the mind of other leaders.
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and the evolution of conflict, in a dynamic model of defensive weapons
procurement. In a related paper, Chassang and Padró i Miquel (2010) study
a dynamic exit game with a noisy signal structure and show that there is
an important link between strategic risk and the possibility of cooperation.4

These authors build on the work of Carlsson and van Damme (1993), who
introduced a perturbation that can be used to select equilibria in games with
multiple equilibria. Our paper differs from these papers in important ways.5

Most important of these is the fact that our framework is tractable enough
that we can study the effect cheap talk on the set of equilibrium outcomes.
Thus, following Fearon (1995) and others,6 we model diplomacy as cheap
talk, and ask whether diplomacy can make cooperation possible when it
would otherwise not be possible. The same question is also asked by Baliga
and Sjöström (2004), who analyze a security dilemma and show that cheap
talk can increase the probability of cooperation when players are uncer-
tain about the arming costs of their adversaries. However, unlike Baliga and
Sjöström (2004), who focus on idiosyncratic costs (a private values case),
we study a situation where countries might misperceive the fundamentals
of the strategic environment (a common values case), and we show that in
many situations cheap talk cannot remedy their failure to cooperate.

Like Baliga and Sjöström (2004) and Baliga and Morris (2002), however,
we are unable to provide general results on cheap talk that hold across the
class of games that we study.7 Nevertheless, all of our results are negative,
and go against the grain of prior work. For instance, Example 2 in Baliga and
Morris (2002) shows that with correlated types, cheap talk can improve upon
the no-cooperation outcome that obtains in its absence, even when only one
side is permitted to speak. Moreover, the side that speaks uses only two mes-
sages. In contrast, we show in Proposition 2 that no matter how correlated
the types are in our model, cheap talk does not change the set of equilibrium

4 Chassang and Padró i Miquel (2009b) use similar methods to show how mutual fears may
aggravate the effect of negative economic shocks on civil conflict intensity.

5 For one, our framework is tractable enough that we can generalize the argument of previous
models to a broader class of games. Second, we implicitly show that the importance of risk-
dominance in the Carlsson–van Damme approach is an artifact of symmetries built into their
information structure, and that risk-dominance is not a necessary condition for analogous
results to hold under a more general class of information structures. (See Harsanyi and Selten,
1988, for the definition of risk-dominance.)

6 See also Ramsay (2011), Sartori (2002), and Smith (1998).
7 Baliga and Sjöström (2004) study a particular game, while Baliga and Morris (2002) construct

three examples to demonstrate that their results on cheap talk do not generalize outside the
class of incomplete information games that they study.
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outcomes when only one side is permitted to speak and the message space is
finite. Similarly, Example 3 in Baliga and Morris (2002) and Theorem 2 of
Baliga and Sjöström (2004) study models with private values. These authors
show that if both players can send one of two messages, then mutual coop-
eration occurs in equilibrium with positive probability. In contrast, Propo-
sition 3 of this paper finds conditions for our common values environment
such that no side cooperates with more than zero probability in any equilib-
rium of the game even when both countries are permitted to send one of two
messages. Although none of our results directly contradict previous findings,
they do indicate the limitations in our understanding of cheap talk’s effect
in games of incomplete information. More importantly, they advance our
intuition about cheap talk’s effect in games with higher order uncertainty.

The common values environment that we study in this paper is what
sets it apart from previous formal work on the security dilemma.8 Yet, our
approach has a clear motivation in many of the classic works on the secu-
rity dilemma. For example, Quester (1977), Jervis (1978), and Levy (1984)
all stress the importance of uncertainty about the ‘‘strategic fundamen-
tals’’ of the security environment in explaining the occurrence of conflict.
These authors place the balance between offensive and defense capabilities,
given current state of military technology — or what the literature calls
the offense–defense balance — at the heart of their analysis. Lynn-Jones
(1996, p. 665) defines the offense–defense balance, more precisely, to be the
amount of resources that a state must invest in offense to offset an adver-
sary’s investment in defense. The offense is said to be advantaged if it is
beneficial to launch a surprise attack on the adversary rather than to defend
one’s territory (Jervis, 1978, p. 187). These and other authors claim that
the historical relevance of the offense–defense balance is undeniable. For
example, Van Evera (1999, Ch. 7) recounts how differing perceptions of the
offense–defense balance contributed to the start of World War I.

Our starting point, then, is to place states’ uncertainty regarding the strate-
gic environment at the center of our analysis of the security dilemma. Specifi-
cally, we consider an environment with structural uncertainty about the state
of the offense–defense balance, and we analyze the effect of this uncertainty
on the possibility of bilateral cooperation. Our modeling approach builds
directly on the approach established by the previous literature.

8 Previous work, for example, Kydd (2005), and Baliga and Sjöström (2004), focuses on private
values and the use of costly or costless signaling to achieve cooperation.
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Figure 1. The Security Dilemma.

1 Model

Following Jervis (1978), we begin by supposing that relations between two
countries are described either by a Stag Hunt or by a Prisoner’s Dilemma.
Figure 1, which we reproduce here almost exactly as it appears in Jervis
(1978, p. 171), depicts the two possibilities: two countries i = 1, 2 must
decide whether to cooperate C or defect D, but there is uncertainty as to
whether their payoffs are given by the left payoff matrix or by the right.9

The figure depicts the payoffs to each country i when facing the opponent
country −i. Whether the true payoffs are given by the left or right matrix is
determined by a state variable s ∈ R, which represents the offense–defense
balance. If s ≤ 0 then the offense is advantaged, and the payoffs are given by
the left matrix, a Prisoner’s Dilemma. If s > 0 then the defense is relatively
more advantaged, and the payoffs are given by the right matrix, a Stag Hunt.
Throughout the paper, we maintain the assumptions that Wi > wi > 0 and
ai, bi > 0 for both i = 1, 2. These assumptions guarantee that the left payoff
matrix in Figure 1 is indeed a Prisoner’s Dilemma, and the right matrix is
a Stag Hunt, as they are labeled.

The state s is a realization of some distribution π over S ⊆ R. We assume
that conditional on s, each country i receives a private signal xi ∈ R drawn
from a distribution Gi(·|s). We refer to the triple (π, G1, G2), where Gi =
{Gi(·|s)}s∈S , i = 1, 2, as the information structure. Given the information
structure, the set of possible signals for country i is Xi =

⋃
s∈S suppGi(·|s),

and a pure strategy for country i is a function αi : Xi → {C, D}.
We now make some assumptions about the information structure. Given

the information structure, let Hi(·|xi) denote player is posterior distribution

9 The only difference is that Jervis (1978) provided a preference ordering over outcomes for each
matrix, while we consider parametric payoffs that satisfy his ordering.
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over the state (updated by Bayes rule), conditional on receiving signal xi.
Also, let Fi(·|xi) denote country i’s posterior distribution over the possible
signals received by the other country −i (again, updated by Bayes rule),
conditional on receiving signal xi. Then, we assume

(A1) ∃t ∈ R s.t. ∀i = 1, 2,

(i) if t ≥ xi ∈ Xi then suppHi(·|xi) ⊆ (−∞, 0].

(ii) if t ≤ xi ∈ Xi then ∃ε > 0 s.t. Fi(xi − ε|xi) > bi/(wi + bi).

Part (i) of the assumption states that if a country receives a small enough
signal, then it is certain (believes with probability 1) that it is playing the
Prisoner’s Dilemma in the left matrix of Figure 1. Part (ii) states that if
a country i receives a high signal then it believes that the other country’s
signal is lower than its signal with probability larger than bi/(wi + bi). This
technical assumption implies the substantive assumption that defecting is
not too ‘‘risky.’’ If country i conjectured that its opponent plays a strategy
that prescribes defection for signals smaller than its own, then country i

would have a strict incentive to also defect.
Rather than describing a particular game, we have so far characterized

a class of games G that we call security dilemma games. Holding fixed the
players, i = 1, 2, their common action set, {C, D}, and the parameters,
(wi, Wi, ai, bi)i=1,2, a security dilemma game Γ ∈ G is fully described by its
information structure (π, G1, G2) satisfying assumption (A1). We now com-
plete the description of some games that fall in the class G.

1.1 Examples

The games described below have different information structures, but all of
them are security dilemma games satisfying assumption (A1).

Game ΓA. Suppose that the prior distribution of the state variable s is
the improper uniform prior on R.10 Country 1 observes the state perfectly,
so it always receives the signal x1 = s, while country 2 receives a signal x2

that is uniformly distributed on the interval [s − ξ, s + ξ] with ξ arbitrarily
small. This implies that conditional on receiving signal x2, country 2 believes

10 The assumption of an improper prior is nonstandard, but poses no difficulties, since the players’
interim beliefs are well-defined. (See, e.g., Morris and Shin 2003.)
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that the state is uniformly distributed on [x2 −ξ, x2 +ξ]. It also implies that
conditional on its signal xi, each country believes that the other country’s
signal is uniformly distributed on [xi − ξ, xi + ξ]. Part (i) of assumption A1
is satisfied, with t = −ξ, and part (ii) is satisfied if

(A2) bi < wi, i = 1, 2.

This is because for the game we have just described, Fi(·|xi) is continuous at
x−i = xi with Fi(xi|xi) = 1/2 for all xi ∈ Xi = R, i = 1, 2. Note that (A2)
implies that mutual defection is risk-dominant in the Stag Hunt of Figure 1,
but that (A1) itself does not contain any implicit assumption regarding risk-
dominance.

Game ΓB. Again, suppose that the prior distribution of s is the improper
uniform prior on R. However, this time assume that each country observes
the state with some noise: conditional on the state s, each country receives
a private signal independently drawn from the uniform distribution over
[s − ξ, s + ξ] with ξ arbitrarily small. This implies that conditional on its
signal xi, each country believes that s is distributed uniformly on [xi −
ξ, xi + ξ]. Conditional on its signal xi, each country i believes that the other
country’s signal is distributed according to the tent-shaped density

f(x−i|xi) =




1
2ξ

(
1 − xi − x−i

2ξ

)
if xi − 2ξ ≤ x−i ≤ xi

1
2ξ

(
1 +

xi − x−i

2ξ

)
if xi < x−i ≤ xi + 2ξ

0 otherwise.

(1)

Assumption (A1) is satisfied (again, with t = −ξ) if (A2) holds, for the same
reason as in game ΓA.

Game ΓE. The state space is S = {−1, 0, 1, 2, . . . ,∞}. The prior proba-
bility of state s ∈ S is given by (1

2)2+s. If the state is s, then each country i

independently observes signal xi = s with probability q ∈ (0, 1), and signal
xi = s+1 with probability 1−q. Therefore, conditional on signal xi, country i

believes the state is xi with probability q
2−q and believes that the state is

xi − 1 with complementary probability. Conditional on signal xi, country i

believes that the other country’s signal is xi −1 with probability q(1− q
2−q ),
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xi + 1 with probability (1 − q)( q
2−q ) and xi with remaining probability.

Part (i) of assumption (A1) is satisfied with t = 0. For part (ii), we need

(A3) q

(
1 − q

2 − q

)
> max

{
b1

w1 + b1
,

b2

w2 + b2

}
.

Since we can set b1 and b2 arbitrarily small, we can always find parameters
such that this inequality holds.

In the game ΓA, a country with signal larger than ξ is certain that the
payoffs are given by the Stag Hunt. A country with signal larger than 2ξ is
certain that the other country is certain that the payoffs are given by the
Stag Hunt. A country with signal larger than 3ξ is certain that the other
country is certain that it is certain that the payoffs are given by the Stag
Hunt. And so on. The games ΓB and ΓE have analogous belief structures,
all of which are similar to Rubinstein’s (1989) e-mail game. Yet, we will
show that cooperation is not possible in any equilibrium of any game in the
class G.

2 Main Result

We now state and prove our main result: no matter how high the signals
of the countries, and no matter how precise their observations of the state,
there is no equilibrium of any security dilemma game in which any type of
either country cooperates.

Theorem 1 Every security dilemma game Γ ∈ G has a unique equilibrium
in which all types of both countries defect.

Proof: First note that for every game Γ ∈ G, it is an equilibrium for all
types of both countries to defect. To show that there are no other equilibria,
suppose that there is an equilibrium in which a nonempty set of types Ci ⊆
Xi of some country i cooperate.

If Ci 
= ∅ for some country i, then the number x∗ = inf C1 ∪ C2 exists,
and by assumption (A1) we have x∗ ≥ t. In addition, either x∗ = inf C1 or
x∗ = inf C2, or both. Let j be any country such that x∗ = inf Cj . Now, there
are two possibilities: (i) x∗ ∈ Cj and (ii) x∗ /∈ Cj . Suppose x∗ ∈ Cj and that
country j receives signal x∗. Given country −j’s equilibrium strategy, let ϕ
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denote the probability with which country j believes that country −j will
cooperate. Since x∗ ≥ t, assumption (A1) implies that country j believes
that country −j’s signal is smaller than x∗ with probability larger than
bj/(wj + bj). But, by definition of x∗, all types of country −j below x∗ defect.
So ϕ < wj/(wj + bj). This implies that the expected payoff to country j

from cooperating is

ϕWj < ϕWj + wj − ϕ(wj + bj) = ϕ(Wj − bj) + (1 − ϕ)wj , (2)

where the quantity on the right side of the inequality is country j’s expected
payoff from defecting. Therefore, we have shown that the type x∗ of country j

can profitably deviate to defection: a contradiction.
Next, suppose that x∗ /∈ Cj . By construction, we can choose a type x̃ > x∗

that is close enough to x∗ so that x̃ ∈ Cj and the type x̃ of country j believes
with probability at most ϕ̃ < wj/(wj + bj) that country −j will cooperate.
We can then use an argument similar to the one above to show that this type
of country j could profitably deviate to defection: again, a contradiction. �

2.1 Reconstructing the Belief Structure

The logic of Theorem 1 can be explained by reconstructing the countries’
beliefs associated with the information structure of a particular security
dilemma game. Consider the game ΓA whose information structure was
described in Section 2.1. Assume (A2) so that ΓA belongs to the class G,
and for expositional purposes assume, in addition, that the payoffs are
symmetric:

(A4) (wi, Wi, ai, bi) = (w, W, a, b), i = 1, 2.

For country 1 to cooperate, it must believe with at least probability
p = w/(w + b) > 1/2 that its opponent will also cooperate. Now, recall
that a country that receives a signal smaller than −ξ must defect. There-
fore, country 1 must believe that country −i’s signal is larger than −ξ with
probability at least p. In the terminology of Monderer and Samet (1989)
country 1 must ‘‘p-believe’’ that country 2’s signal is larger than −ξ. For
this to be true, country 1’s signal must be weakly larger than the threshold
x0 = −2ξ(1 − p). This threshold is calculated by finding the value of x0

such that the length of the interval [−ξ, x0 + ξ] is p times the length of the
interval [x0 − ξ, x0 + ξ], which is 2ξ.
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Now, observe that p-believing that country 2 received a signal larger
than −ξ is only a necessary condition for country 1 to cooperate. It is not
sufficient. In fact, we need country 1 to p-believe the following event as well:

country 2 p-believes that country 1’s signal is larger than −ξ.

Otherwise, if country 2 does not p-believe that country 1’s signal is larger
than −ξ, then country 2 cannot be expected to cooperate. And if country 2
does not cooperate, then country 1 does not have an incentive to cooperate
either. But then for country 2 to p-believe that country 1’s signal is larger
than −ξ, country 2’s signal must be at least x0. Therefore, for country 1 to
p-believe that country 2 p-believes that country 1’s signal is larger than −ξ,
country 1’s signal must be weakly larger than the threshold x1 = ξ(2p−1)−
2ξ(1 − p). This threshold is calculated by finding the value of x1 such that
the length of the interval [x0, x1 + ξ] is 2ξp.

Again, however, the conditions that country 1 p-believes that country
2’s signal is larger than −ξ and p-believes that country 2 p-believes that
country 1’s signal is larger than −ξ are together still only necessary for
country 1 to cooperate, not sufficient. Country 1 must also p-believe that
country 2 p-believes that country 1 p-believes that country 2’s signal is larger
than −ξ. Otherwise, country 1 cannot expect country 2 to expect country 1
to cooperate, will therefore not expect country 2 to cooperate, and thus it
will not be in country 1’s interest to cooperate. In fact, for country i = 1, 2 to
cooperate it must p-believe each of the following infinite sequence of events:

(0) −i’s signal is larger than −ξ

(1) −i p-believes that i’s signal is larger than −ξ

(2) −i p-believes that i p-believes that −i’s signal is larger than −ξ

(3) −i p-believes that . . .
(4) . . . ad infinitum

Proceeding inductively, one can show that if country i p-believes the (0)th
through (n)th one of these statements, its signal must be at least

xn = nξ(2p − 1) − 2ξ(1 − p). (3)

Since ξ > 0 and p > 1/2, this quantity is unboundedly increasing in n.
Consequently, there is no signal value for which country i p-believes every
element of the infinite sequence of events listed above. As a result, there is
no signal value for which country i cooperates.
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Reconstructing the belief structure also enables us to clarify the impor-
tance of assumption A1(ii) in proving Theorem 1. This assumption
guarantees that the sequence of thresholds xn is increasing and converges
to +∞. For example, in the game ΓA, suppose that (A2) holds with reverse
inequality so that A1(ii) is violated. Then p < 1/2, and the sequence of xn

decreases, converging to −∞. Therefore, the iterative procedure above fails,
and there may be equilibria in which the countries cooperate.

3 Cheap Talk Diplomacy

Theorem 1 above shows that without the opportunity to communicate, two
countries playing a security dilemma game Γ ∈ G are incapable of coop-
erating in equilibrium. In this section we ask whether the opportunity to
communicate enables cooperation.

Consider the following modification to a game Γ ∈ G. Suppose that after
both countries observe their private signals, each is able to make a public
announcement. Both countries can then make their decisions of whether or
not to cooperate dependent on the pair of announcements. Let Mi denote
the nonempty set of available messages for country i. A pure strategy for
country i is a pair (µi, σi) such that µi : Xi → M is its message rule and σi :
M1×M2×Xi → {C, D} is its action rule. Note that each country can condi-
tion its action on its signal and on the pair of announcements. We have now
defined a new game Γ̂, which we call the cheap talk extension of Γ. Let Ĝ(Γ)
denote the class of games that are cheap talk extensions of the game Γ.11

To study the effect of cheap talk, we make the following assumption, which
states that there are positive spillovers to cooperation in the Stag Hunt
payoff matrix of Figure 1:

(A5) bi < Wi − wi, i = 1, 2

Assumption (A5) implies that each country would always like the other
country to cooperate regardless of whether it intends to do so itself.12

Unfortunately, we are not able to provide general results that hold across
all cheap talk extensions of games in G. Instead, we study various cheap-talk

11 Note that this is a large class, since in describing a cheap talk extension Γ̂, we have not specified
the sets M1 and M2. For example, M1 could be finite while M2 is infinite, or they could both
be finite, or one could be a singleton while the other one is infinite, etc.

12 Cheap talk extensions to Bayesian games with binary action positive spillovers were first
studied by Baliga and Morris (2002).
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extensions to the games described in Section 2.1. We begin by proving our
simplest result, which relies on an argument due to Baliga and Morris (1998).
These authors showed that pre-play communication has no effect on the
equilibrium outcome of Rubinstein’s (1989) e-mail game. Not surprisingly,
the same is true for the game ΓE , which is similar to the e-mail game.

Proposition 1 Assume (A3) and (A5). Then, in every equilibrium outcome
of every cheap talk extension Γ̂E ∈ Ĝ(ΓE), all types of both countries defect.

Proof: Suppose to the contrary, that some type xi of either country i = 1, 2
cooperates in some equilibrium of a game Γ̂E ∈ Ĝ(ΓE). Fix the equilibrium,
and let x∗

j be the smallest type of either country that cooperates, with j

denoting the country associated with this type. Let m∗
j be the equilibrium

message sent by x∗
j , and let M∗

−j be the set of messages of the other country
that induce x∗

j to cooperate. (In other words, σj(m∗
j , m−j , x

∗
j ) = C for all

m−j ∈ M∗
−j 
= ∅.) Since it is strictly dominant for types −1 and 0 to defect,

we must have x∗
j ≥ 1. Next, by assumption (A5), the type x∗

−j = x∗
j − 1 of

country −j must send a message m∗
−j ∈ M∗

−j . But, by definition of x∗
j , the

type x∗
−j = x∗

j − 1 of country −j chooses to defect. Therefore, conditional
on receiving message m∗

−j , the type x∗
j believes that country −j will defect

with probability weakly larger than q(1 − q
2−q ) > bj/(wj + bj), which holds

by assumption (A3). Therefore, country j cannot cooperate after message
profile (m∗

j , m
∗
−j), establishing the intended contradiction. �

Proposition 1 shows that cheap talk is ineffective when added to the
game ΓE . Does this result also hold for games ΓA and ΓB? We do not pro-
vide a complete answer to this question, but our results below suggest that
communication is difficult, if not impossible. First, consider the case of one-
sided messages. Let G(Γ�) denote the (sub)class of cheap talk extensions of
the game Γ�, � = A, B, such that M1 is finite and M2 is a singleton. In these
games, only player 1 has the opportunity to communicate, and may do so
with a finite set of messages (which we allow to be arbitrarily large). The
next proposition states that there are no equilibria in which communication
takes place in any game in this class.

Proposition 2 Assume (A2) and (A5). Then, in every equilibrium outcome
of every cheap talk extension Γ�∈ G(Γ�), � = A, B, all types of both countries
defect.
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Proof: We prove this only for the case where � = A. The case where � = B

is conceptually identical, but more tedious.
Let pi = wi/(wi + bi) and note that pi ∈ (1

2 , 1), i = 1, 2, by assump-
tion (A2). Also note that X1 = X2 = R. For any set X ⊆ R let

ΦX(x) =
1
2ξ

· λ(X ∩ [x − ξ, x + ξ]), (4)

where λ(·) is Lesbegue measure. In words, this is the probability mass that
type x of a country assigns to the event that the signal received by the other
country falls in the set X, unconditional on the message profile. Observe
that

x′ ≤ x ⇒ ΦX(x′) ≤ ΦX(x) ∀X ⊆ [x,∞). (5)

Now, fix an equilibrium ((µ1, σ1), (µ2, σ2)). Since M2 is a singleton, we can
set M2 = {m2}, so that µ2(x) = m2 for all x ∈ X2. Define the sets

Cm
1 = {x ∈ X1 | µ1(x) = m, σ1(m, m2, x) = C}

Dm
1 = {x ∈ X1 | µ1(x) = m, σ1(m, m2, x) = D}, m ∈ M1 (6)

These are the sets of country 1 types that send message m and respectively
cooperate and defect. Also, define the set

C2 = {x ∈ X2 | ∃x1 ∈ [x − ξ, x + ξ] s.t. σ2(µ1(x1), m2, x) = C}. (7)

This is the set of country 2 types that cooperate in some equilibrium outcome
of the game. Note that if Cm

1 = ∅ for all m ∈ M1 then C2 = ∅. So to prove
the result, it suffices to show that Cm

1 = ∅ for all m ∈ M1. To that end,
suppose for the sake of contradiction that Cm

1 
= ∅ for some m ∈ M1 and let
x∗

1 = inf
⋃

m∈M1
Cm

1 . Then, C2 
= ∅, so we can define x∗
2 = inf C2. We know

that x∗
1, x

∗
2 ≥ −ξ. The contradiction is then established in three steps.

Step 1. x∗
1 − ξ ≤ x∗

2 ≤ x∗
1 − ξ(2p1 − 1).

If x∗
2 < x∗

1 − ξ then there is a type x2 < x∗
1 − ξ of country 2 such that

σ2(µ1(x1), m2, x2) = C for some x1 ∈ [x2 − ξ, x2 + ξ]. But, since x2 + ξ < x∗
1,

all country 1 types in the interval [x2 − ξ, x2 + ξ] defect. Therefore, the type
x1 cannot exist, and we must have x∗

1 − ξ ≤ x∗
2.

If x∗
1−ξ(2p1−1) < x∗

2 then there exists a type x1 ∈ [
x∗

1, x
∗
2+ξ(2p1−1)

)
such

that σ1(µ1(x1), m2, x1) = C. But by definition of x∗
2, the type x1 of country 1
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believes with probability at most 1
2ξ (x1 + ξ − x∗

2) < 1
2ξ

(
x∗

2 + ξ(2p1 − 1)+
ξ − x∗

2
)

= p1 that country 2 will cooperate. So type x1 of country 1 will
defect. So x∗

2 ≤ x∗
1 − ξ(2p1 − 1).

Step 2. ∃ x̃ ∈ [x∗
1 − ξ, x∗

1] s.t. σ2(µ1(x̃), m2, x2) = D for all x2 ∈ [x∗
2, x

∗
1].

Assume not. Let M∗
1 = {m ∈ M1 | ∃x1 ∈ [x∗

1 − ξ, x∗
1] s.t. µ1(x1) = m} be

the set of messages sent by country 1 types between x∗
1 − ξ and x∗

1. For each
m ∈ M∗

1 , let xm ∈ [x∗
2, x

∗
1] be a type such that σ2(m, m2, x

m) = C. (The
hypothesis is that the type xm exists for each m ∈ M∗

1 .) Then, because the
type xm, m ∈ M∗

1 , cooperates after seeing message m from country 1, we
must have

ΦCm
1

(xm) ≥ p2(ΦCm
1

(xm) + ΦDm
1

(xm)) ∀m ∈ M∗
1 . (8)

Summing over m ∈ M∗
1 , and rearranging, we get

∑
m∈M∗

1

ΦCm
1

(xm) ≥ p2

1 − p2

∑
m∈M∗

1

ΦDm
1

(xm). (9)

Also, note that by definition of M∗
1 , and because [x∗

1−ξ, x∗
1] ⊂ [xm−ξ, xm+ξ],

we have ∑
m∈M∗

1

ΦDm
1

(xm) ≥ 1
2
. (10)

Combining this with (9), and the fact that p2 > 1
2 , we arrive at

∑
m∈M∗

1

ΦCm
1

(xm) >
1
2
. (11)

However, notice that we must have
∑

m∈M∗
1

ΦCm
1

(xm) ≤
∑

m∈M∗
1

ΦCm
1

(x∗
1) = Φ⋃

m∈M∗
1

Cm
1

(x∗
1) ≤ 1

2
. (12)

The second inequality holds because Cm
1 ⊆ [x∗

1,∞) for all m ∈ M∗
1 , by defini-

tion of x∗
1. The equality holds because {Cm

1 }m∈M1 is by definition a collection
of mutually disjoint sets. The first inequality holds by the property in (5),
since xm ≤ x∗

1 for all m ∈ M∗
1 . But then (11) and (12) contradict each other.

Step 3. The type x̃ (from Step 2) of country 1 has a profitable deviation.
Consider a type x1 ∈ [x∗

1, x
∗
1 + ε)∩ (

⋃
m∈M1

Cm
1 ), where ε is small, i.e., 0 <

ε < ξ(2p1 − 1). Let µ1(x1) = m1. Since ΦC2(x1) ≥ p1 > 1
2 , the fact that ε is
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small implies that there is a type x2 ∈ [x∗
2, x

∗
1] such that σ2(m1, m2, x2) = C.

Therefore, µ1(x̃) = m̃ 
= m1 by definition of type x̃. However, observe that
by sending message m̃ type x̃ of country 1 can expect country 2 to cooperate
with probability at most

1
2ξ

(x̃ + ξ − x∗
1) =

1
2

− 1
2ξ

(x∗
1 − x̃). (13)

But by deviating to the message m1, type x̃ of country 1 can expect country 2
to cooperate with probability at least

p1 − 1
2ξ

[(x1 + ξ) − (x̃ + ξ)] = p1 − 1
2ξ

(x1 − x̃)

≥ p1 − 1
2ξ

(x∗
1 + ε − x̃)

>
1
2

− 1
2ξ

(x∗
1 − x̃). (14)

So the type x̃ of country 1 can expect a country 2 to cooperate with strictly
larger probability after sending message m1 than after sending message m̃.
Therefore, by (A5), it is profitable for the country 1 type x̃ to deviate to
message m1. �

As we mentioned in the introduction, Example 2 in Baliga and Morris
(2002) studies the effect of cheap talk in a setting with correlated types.
These authors show that with cheap talk, mutual cooperation may be part
of an equilibrium outcome even when there are positive spillovers to coop-
eration. Moreover, the equilibrium that they construct has only one player
sending one of two messages. In contrast, observe that in the game ΓA,
the players’ types become perfectly correlated as ξ → 0. Yet, Proposition 2
establishes that neither side will ever cooperate even when player 1 can send
one of a large but finite number of messages.

Restricting only one side to speak may not be reasonable if the goal is
to model diplomacy as cheap talk. Example 3 of Baliga and Morris (2002)
and Theorem 2 of Baliga and Sjöström (2004) study models with uncorre-
lated types. Both papers show that mutual cooperation may be an equilib-
rium outcome when both players are allowed to speak, even when there are
positive spillovers to cooperation. Moreover, in proving this, both papers
construct equilibria in which no player uses more than two messages. What
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happens when we allow for two sided cheap talk with binary message spaces?
Let Ğ(Γ�) denote the (sub)class of cheap talk extensions of the game Γ�,
� = A, B, such that |M1| = |M2| = 2. In this class of games, both players
can speak, but may only send one of two messages. So, for example, they
may announce their intended action. In this setting, we can construct trivial
equilibria in which mutual cooperation is an equilibrium outcome. Consider,
for example, the strategy profile where all types of country i, except the
type ξ, send message mi ∈ Mi and the type ξ sends message m′

i 
= mi;
and all types of both countries defect except when the message profile is
(m′

1, m
′
2), in which case they cooperate. This strategy profile is part of an

equilibrium, but conditional on any state s, the probability of cooperation
by either country is always zero. The next proposition shows that if b1 and
b2 are low enough, then it can never be greater than zero.

Proposition 3 Fix a game Γ̆� ∈ Ğ(Γ�), � = A, B. For each country i = 1, 2
there exists a threshold bi > 0 such that if bi < bi, i = 1, 2, then conditional
on any state s, both countries defect with probability 1 in every equilibrium
of the game Γ̆�.

Proof: We prove this only for � = A. (Again, the case � = B is conceptually
identical, but more tedious.) So fix a game Γ̆A ∈ Ğ(ΓA), and let

bi = min{Wi − wi, wi/7}. (15)

We show that if bi < bi, i = 1, 2, then conditional on any state s, both
countries defect with probability 1 in every equilibrium of the game Γ̆A.
Note that if bi < bi, i = 1, 2, where bi is given by (15), then both (A2) and
(A5) are satisfied.

Now, fix an equilibrium, and for each i = 1, 2, define the set

Ci = {x ∈ Xi | ∃ε > 0 and m−i ∈ M−i s.t.

∀xi ∈ [x, x + ε), σi(µi(xi), m−i, xi) = C}. (16)

Assume for the sake of contradiction that Ci 
= ∅ for some i = 1, 2. Let
x∗ = inf C1 ∪ C2, and note that x∗ ≥ −ξ. Let j be any country for which
x∗ = inf Cj . Fix ε > 0 small and consider a type x̃j ∈ [x∗, x∗ + ε) ∩ Cj . Let
m−j ∈ M−j denote the message such that σj(µj(x̃j), m−j , x̃j) = C. Then,
there must be a type x̃′

j ∈ Cj such that

x̃′
j ≤ x∗ + ε + 2ξ

bj

wj + bj
(17)
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and σj(µj(x̃′
j), m

′
−j , x̃

′
j) = C, where m′

−j 
= m−j . Otherwise, by (A5), all
country −j types in the interval (x̃j − ξ, x∗ + ε + 2ξ bj

wj+bj
− ξ] would send

message m−j . Therefore, conditional on message profile (µj(x̃j), m−j), the
type x̃j would believe that country −j will defect with at least probability

1
2ξ

(
ε + 2ξ

bj

wj + bj

)
=

bj

wj + bj
+

ε

2ξ
(18)

and therefore would choose to defect after the message profile (µj(x̃j), m−j),
a contradiction.

Now, because each country has only two messages, there are two cases:
(i) at least a measure ξ/2 of country −j types in the interval [x∗ − ξ, x∗]
send message m−j , or (ii) at least a measure ξ/2 of country −j types in
the interval [x∗ − ξ, x∗] send message m′

−j . In case (i), conditional on mes-
sage profile (µj(x̃j), m−j) the type x̃j believes that country −j defects with
probability at least

1
2ξ

(
ξ

2
− ε

)
=

1
4

− ε

2ξ
. (19)

In case (ii), conditional on message profile (µj(x̃′
j), m

′
−j), the type x̃′

j believes
that country −j will defect with probability at least

1
2ξ

[
ξ

2
−

(
ε + 2ξ

bj

wj + bj

)]
=

1
4

− ε

2ξ
− bj

wj + bj
. (20)

If bj < wj/7 then we can choose ε small enough that the probability
thresholds in (19) and (20) are both strictly larger than bj/(wj + bj),
which establishes the intended contradiction. This means that we must have
C1 = C2 = ∅. Thus, conditional on any state s, both countries defect with
probability 1. �

The threshold in (15) that we used in proving Proposition 3 is sufficient,
but may not be necessary for our no-cooperation result to hold. As we sug-
gested earlier, we are not sure how far the result in Proposition 3 generalizes,
as it is not obvious how to generalize our proof strategy. In any case, Propo-
sition 3 provides a counterpoint to previous results (i.e., Example 3 of Baliga
and Morris, 2002, and Theorem 2 of Baliga and Sjöström, 2004) that show
that cheap talk can have a significant effect in two player binary action
games of incomplete information with players using only two messages.

What explains the difference between our results and previous results on
cheap talk? In Baliga and Sjöström (2004), for a given player the relative
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payoff to cooperating when the other player defects (or cooperates) is inde-
pendent of the other player’s type. Because some types get high returns to
defecting while others pay small costs to cooperating and being defected on,
this results in a variation in incentive compatibility constraints that enables
cheap talk to be partially informative. In our model, however, this type of
variation does not occur, despite types being correlated. While in our model,
correlation does not create the requisite variation in incentive constraints to
eliminate the incentives for deception, it does (by a clever construction) in
Example 2 of Baliga and Morris (2002).

4 Final Remarks

Our results support the logical validity of offensive realism as a paradigm of
world politics, and they demonstrate its consistency with a rational theory
of international cooperation. However, it would be a mistake to interpret our
results as providing an unqualified endorsement of offensive realism. This
is because our model is silent about when assumptions (A1) and (A5) are
accurate descriptions of real-life situations. For example, as we suggested
in the introduction, our assumptions are consistent with the situation that
precipitated World War I but not with the situation that precipitated World
War II. An explanation for when the World War I situation arises is an
important question for research, but is outside the scope of our paper. More-
over, it is straightforward to show that if assumption (A1) (ii) is violated
then mutual cooperation is an equilibrium outcome.13 Similarly, if assump-
tion (A1) is satisfied but (A5) is violated, then cheap talk enables coop-
eration in some games where it would otherwise not be possible.14 These
observations are hardly surprising given the existing literature. Having said

13 Suppose for concreteness that (wi, Wi, ai, bi) = (4, 12, 4, 8), i = 1, 2 and the information struc-
ture is given by the game ΓB . Here (A2) is violated so mutual cooperation is risk dominant.
Then, it is easy to verify that there is a symmetric equilibrium in which all types (weakly)
above (1 + 2/

√
3)ξ cooperate and all types below this threshold defect.

14 Suppose for concreteness that (wi, Wi, ai, bi) = (8, 12, 4, 5), i = 1, 2 and the information struc-
ture is given by the game ΓB . Here, (A2) is satisfied so mutual defection is the only equilibrium
outcome. However, in the cheap talk extension ΓB ∈ G(ΓB) in which country 1 can send one
of a finite number of messages, mutual cooperation is an equilibrium outcome. In fact, let
κ1 = 1 − 2

√
30/9 and κ2 = 2

√
6/3 − (1 + 2

√
30/9). Then, it is easy to verify that the following

is an equilibrium to this game: (i) all country 1 types (weakly) above κ1ξ send message m and
cooperate, and all other types send message m′ �= m and defect, and (ii) all country 2 types
(weakly) above κ2ξ cooperate if and only if the message is m, and all other types defect after
every message.
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that, it is difficult to make sense of a violation of assumption (A5) in our
context: If (A5) does not hold, then a defecting country would (weakly) gain
from its opponent defecting rather than cooperating. (So while it is plau-
sible that assumption (A1) might not be empirically descriptive, it is less
plausible that assumption (A5) is violated.)

Finally, our paper leaves many questions unanswered. First, we narrowly
focused our attention on costless signaling because we were interested in
studying the effectiveness of diplomacy. We have left open the question of
what would happen if we allowed for costly signals (though we suspect that
there are many situations in which costly signaling would be effective). How-
ever, we should mention that although it may be possible to generate positive
results on cooperation with costly signals (as Kydd, 2005 has done), such
results would not tell us when we could expect diplomacy to be effective in
the presence of fears created by higher order uncertainty. Second, we have
left open the question of whether there exists a foundation for our model
in which the information structure in this paper arises endogenously when
players strategically acquire information. Third, and most importantly, we
have left open the question of whether there exists a cheap talk extension
to a game in G in which cheap talk can be effective. By focusing our atten-
tion on cheap talk, we were able to compare our results to the influential
results of Baliga and Morris (2002) and Baliga and Sjöström (2004). These
authors have contributed a great deal to our understanding of the effect
of cheap talk on games of incomplete information, and in doing so have
advanced our understanding of the effectiveness of diplomacy for maintain-
ing peace in security environments plagued by uncertainty and misinfor-
mation. However, our results show that more work is required to achieve
a general understanding of the effect of cheap talk in games of incomplete
information.
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