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Abstract

We investigate bilateral bargaining when players can make pre-
play unobserved investments in the value of the item. With one-sided
hidden investments, Gul (2001) shows that when bargaining ineffi-
ciencies are present underinvestment and strategic uncertainty occur.
In our context of two-sided hidden actions, strategic uncertainty in-
duces a post-investment bargaining problem with two-sided private
information that mirrors Myerson and Satterthwaite (1983), and we
would expect inefficiency. However, even though the bargaining pro-
tocol cannot be efficient in the presence of strategic uncertainty we
find that unobserved investing and trade does not lead to distortions.
The two potential sources of inefficiency offset each other. Equilibrium
beliefs that in the presence of strategic uncertainty constrained opti-
mal (second-best) trading will occur results in an unravelling effect
absent in Gul. When both distortions are possible only equilibria in
which neither the hold-up problem nor Myerson-Satterthwaites’ logic
emerge.
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1 Introduction

In an important synthesis of the hold-up problem and bargaining literature

Gul (2001) shows that the magnitude of the inefficiency resulting from hold-

up is related to the efficiency of the equilibrium of the bargaining game. If

the seller makes a one-shot offer to a buyer who makes a relationship-specific

investment before trade, then the inefficiency resulting with unobservable in-

vestment is equivalent to that resulting with observable investment (Gibbons,

1992). On the other end of the spectrum, when the seller makes repeated

offers, and the time between offers vanishes, the investment decision of the

buyer converges to the efficient level. Thus, Gul shows that if the equilib-

rium to the bargaining protocol extracts all the surplus, which is the case

in the one-sided repeated offers game with one-sided incomplete information

and vanishing time between periods (Gul and Sonnenschein, 1988), then the

underinvestment associated with the hold-up problem goes away. His result

also demonstrates that when bargaining is itself not fully-efficient (as in the

case of non-trivial time-frictions) the presence of hidden investment decisions

leads to additional distortions through the hold-up problem.

In this paper we investigate whether this intuition carries over to the

case of two sided unobserved investments, a context in which the celebrated

Myerson and Satterthwaite (1983) result suggests that bargaining cannot be

efficient. Specifically, we investigate a setting in which a buyer and seller can

make unobserved investments in the value of an indivisible item and then
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interact the kind of trading setup studied by Myerson and Satterthwaite. In

this case strategic uncertainty on the part of both players generates a post-

investment bargaining problem with two-sided private information. As is

well-known, such bargaining environments often result in conflicts between

efficient trade and incentive-compatibility in the trading mechanism. One

might guess that, as in the case of the one shot game with one-sided incom-

plete information, the underinvestment problem persists because the bargain-

ing protocol cannot be efficient if both the buyer and seller possess (endoge-

nously generated) private information. Alternatively, one might guess that

the inefficiencies from Myerson and Satterthwaite are persistent in settings

where players induce strategic uncertainty through unobserved investments.

We show that these conjectures fail. In particular, there are no equilibria in

which investment decisions induce “second stage” post-investment bargain-

ing inefficiencies. As a result, investment and trade are always optimal in the

sense that after bargaining the good is always possessed by the player who

values it more and the final owner has invested optimally given that she owns

the good. This conclusion stems from an unraveling effect that undermines

any putative mixed investment equilibrium that leads to the optimal second

stage bargaining mechanism being inefficient. In other words only the nat-

ural equilibria exist–where either the buyer will invest optimally and obtain

the item with probability one or the seller will invest optimally and retain

the item with probability one.

Our approach is to connect with extant work as much as possible. We
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augment, in a way that is familiar in the hold-up literature, Myerson and

Satterthwaite’s canonical description of bilateral trade by allowing players’

valuation of the traded item to result from their unobserved investments.

When mixed strategies are played this causes asymmetric information to

emerge endogenously. Specifically, when players cannot observe each other’s

investment decisions, mixing in the investment stage induces strategic uncer-

tainty and, therefore, asymmetric information at the bargaining stage.1 As is

the case in other work of this form, equilibrium conjectures will lead players

to believe that they know the distribution from which unobserved choices

emerge. We then proceed to analyze what is possible in bargaining using the

approach and many results from Myerson and Satterthwaite. We do need

to provide technical extensions to their characterization to cover the case of

poorly-behaved distributions but we relegate these details to the appendix.

In our framework there are three possible forms of inefficiency because

both buyers and sellers can invest. First, at the interim bargaining stage,

taking the investment decisions as fixed but unobserved, trade may exhibit

the inefficiency that is central to Myerson Satterthwaite. Second, the even-

tual winner of the item may not have made an investment decision that

would be optimal if she knew she were guaranteed to obtain the item. Third,

even if the previous two forms of inefficiency are absent, the winning agent

might not be the player that can obtain the greatest value from owning and

optimally investing in the good.

1This is precisely the formulation used in Gul’s case with one-sided hidden actions.
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We find that the possibility of the first two forms of inefficiency offset

each other and in fact, under the assumption that players anticipate the use

of a rule that is “optimal” given beliefs resulting from equilibrium mixing

probabilities, there are never equilibria with strategic uncertainty and ineffi-

ciencies from bargaining–so the first and second form of inefficiency do not

obtain. This is true because given equilibrium beliefs about valuations and

participation constraints, if players anticipate the use of a second-best trad-

ing rule, then either the strategic uncertainty that emerges will not lead to

allocation inefficiencies or strategic uncertainty will not emerge. This is our

main result, Theorem 4. The intuition behind this result can be obtained

by considering the optimal Myerson Satterthwaite mechanism for the case

where both the buyer’s and seller’s valuations are independent draws from

the same uniform distribution. In the second-best rule certain types of buy-

ers do not trade with any seller; this is precisely the source of the famous

wedge. But if valuations are the result of strategic decisions we would not

expect buyers to be willing to expend resources in order to obtain these par-

ticular valuations. It is better to not invest then to pay to obtain a valuation

that does not trade. Thus, some of the valuations in the conjectured support

cannot be optimal investment choices. The emergence of mixed valuations

given by this distribution function is then not possible given an expectation

that bargaining is described by a second-best mechanism.

Unraveling of this sort is not specific to the conjecture that equilibrium

investment decisions induce uniform distributions over the valuations. It
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turns out to be pervasive regardless of the candidate equilibrium beliefs.

Although it is possible to support lotteries over valuations which have over-

lapping supports, these distributions will not actually satisfy the conditions

in Myerson Satterthwaite, and efficient allocations will be possible in the

bargaining problem. Our conclusion is that knowledge that the bargaining

mechanism is chosen optimally, given the relevant constraints and equilib-

rium beliefs about the investment strategies, implies that the form of allo-

cation inefficiency that emerges in Myerson Satterthwaite is not consistent

with equilibrium play. Moreover, the investment decisions will typically be

in pure strategies and will be optimal, given the identity of the player get-

ting the item on the equilibrium path. These two features of the equilibrium

support a somewhat Coasian view where trade is generally efficient.

In addition to the efficiency result, along the way we provide two new

technical results: we characterize the relationship between bargaining proto-

cols and investment incentives and show that the Myerson and Satterthwaite

Theorem fails to extend to the case of distributions of types with atoms, gaps,

and connected components. Using an example we show that efficient and in-

dividually rational mechanisms exist when the distributions over valuations

have gaps and atoms that have sufficiently large mass.
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2 Model

Our point of departure from existing theory is to model the buyer and seller’s

valuations of the indivisible good as a function of investment decisions. For

example, suppose that the object in question is a computing technology such

as a search algorithm or mapping software and the potential owners are

two competing technology companies. Each potential owner could make

investments in the ability to interface the new technology with its existing

products. Each could also invest time or money in finding alternatives to

the technology in question. These investments then influence the value of

the trade to each player. If there is no trade, the seller can capitalize on his

investment but investment returns are lost to him if the object is sold. The

opposite is true for the buyer; her investment generates value only when she

purchases the good.

Formally, consider a risk-neutral seller (player s) who owns an indivis-

ible object and a buyer (player b) who may wish to acquire it. Before

trade/bargaining takes place the seller and the buyer can make unobserved

relationship-specific investments vs and vb. The value to player i ∈ {s, b}

of owning the item at the end of the buyer and seller’s interactions is then

vi− ci(vi). The cost function, ci(vi), is strictly increasing (except possibly at

the point 0), strictly convex and differentiable.2 We assume that ci(0) = 0

for both buyer and seller. We also assume that if either player knew she were

2We sometimes refer to these cost functions as the exogenous investment technologies.
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going to own the item, her optimal investment would be finite, namely that

for some finite level vi we have c′i(vi) = 1.

An investment strategy for a player is a choice of investment level. We

allow the players to select mixed/behavioral strategies, so that the strategy

for player i is a cumulative distribution function Fi(·) over valuations (non-

negative reals). These investments are assumed to be unobservable hidden

actions.3

After the investment stage, the players interact and ultimately the item

ends up owned by the buyer or seller and a transfer is made. We follow the

approach in Myerson and Saterthwaite and abstract away from the partic-

ulars of the bargaining protocol and equilibrium descriptions. Instead we

rely on a direct bargaining mechanism and incentive/rationality constraints

to describe outcomes that are consistent with equilibrium behavior to some

bargaining protocol. Retaining the standard notation, we denote the result

of such bargaining by way of a direct bargaining mechanism which has two

pieces: a probability of trade p and transfer x from the buyer to the seller.

Because the investments are hidden actions, this bargaining is similar to the

problem of bilateral trade with private information albeit here the initiation

of bargaining is at an interim stage in some larger game in which private

information in bargaining possibly arises from hidden actions at an earlier

3To be clear, the investment choice of player i is unobservable to player j, but in equi-
librium the players will correctly conjecture the other player’s strategy. Furthermore, in
any equilibrium in which i employs a mixed strategy, she will be indifferent between all in-
vestment levels in the support of her mixture and weakly prefer these levels to investments
not in the support of Fi(·).

7



stage of the game.

A direct bargaining mechanism is a game where the buyer and seller

simultaneously report valuations, vi to a broker or mediator who then deter-

mines whether the object will be transferred, p, and at what price, x. We

let the message space be the set of all valuations that can result from invest-

ment. Formally, a direct bargaining mechanism is defined by two mappings.

The first p(ms,mb) : R2
+ → [0, 1] determines the probability of trade and the

second, x(ms,mb) : R2
+ → R describes the transfer from the buyer to seller.

The total payoffs for a profile of messages and valuations are

Ws(vs,ms,mb) = vs(1− p(ms,mb)) + x(ms,mb)− cs(vs)

Wb(vb,mb,ms) = vbp(ms,mb)− x(ms,mb)− cb(vb).

We will employ standard techniques to restrict consideration to direct bar-

gaining mechanism that are Bayesian Incentive Compatible, i.e truth telling

is a mutual best response to the mechanism given the investment lotteries

employed. Our focus is on settings in which the players first make simul-

taneous investment decisions and correctly anticipate the direct bargaining

mechanism.4 Treating bargaining as an interim stage requires augmenting

the concept of Bayesian Nash equilibrium to ensure that in determining what

messages are best responses players use beliefs that are consistent with an

equilibrium conjecture of the other players investment strategy and that in-

4Perhaps a more appropriate term would be ”interim direct bargaining mechanism,”
but since we do not have any other mechanism, we will drop the qualified ”interim”.
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vestment strategies are mutual best responses, given equilibrium conjectures

about the reporting strategies. Given a direct bargaining mechanism, a strat-

egy profile for the trading game is a pair of lotteries over investments and

reports, where reports may depend on the realization of the possibly mixed

investment actions. Thus, a strategy for player i is a lottery Fi(·) with sup-

port Vi ⊂ R+ and a reporting rule σi(vi) that defines for every realization of

a player’s valuation what message she will send to the mechanism.

Definition 1. An equilibrium is a direct bargaining mechanism p(·), x(·), a

pair of investment lotteries, (Fs, Fb) and messaging strategies (σb(vb), σs(vs))

s.t. given the lotteries (Fs, Fb), the messaging strategies constitute mutual best

responses to direct bargaining mechanism (p(·), x(·)) (i.e. they are Bayesian

incentive compatible) and, given the valuation contingent payoffs associated

with play of the bargaining mechanism and messaging strategies, the invest-

ment strategies (Fs, Fb) are simultaneous best responses. An equilibrium is

truthful if the messaging strategies are the identity mapping, σi(vi) = vi.

Remark : Employing the logic in Myerson and Saterthwaite’s proof of the

revelation principle one can see that it is sufficient for us to focus on equilibria

that are truthful. In the sequel we will focus only on truthful equilibria and

for economy of exposition we suppress the adjective truthful, thus referring

to equilibria to mean truthful equilibria.

Most interesting trading games will also satisfy the condition that par-

ticipation is voluntary and that the trading game maximizes social welfare.
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In the bilateral trade setting with incomplete information Myerson and Sat-

terthwaite (1983) restrict attention to games that satisfy an interim partic-

ipation constraint where each type’s expected net payoff from participating

in the game is non-negative. In what follows, we will require that the equi-

librium also satisfies this condition after investments are realized.

Definition 2. An equilibrium to a trading game satisfies the interim partic-

ipation constraint (Condition IP) if each player’s expected gains from trade

is non-negative for almost every valuation, vi ≥ 0.

Second, we are interested in the relevance of time-consistency and pre-

commitment to a bargaining mechanism or trading scheme that is optimal

given rational expectations about investing behavior.

Definition 3. We say that an equilibrium is interim optimal (Condition O)

if, given the investment lotteries (Fs, Fb), the bargaining mechanism (p(·), x(·))

maximizes the sum of players’ payoffs within the class of mechanisms that

are incentive compatible and which satisfy the interim participation constraint

given the lotteries, Fs(·), Fb(·).

This model and notion of equilibrium captures two ideas: (1) That when

making investment decisions the traders have rational expectations about

how bargaining will unfold and (2) trade will be conducted in a manner that

is second-best given equilibrium conjectures about investing strategies. One

way of motivating this definition of equilibrium is to think of a game with

three players: buyer, seller, and a broker who selects a direct bargaining
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mechanism after investments and who seeks to maximize the total utility to

the buyer and seller.5 This buyer would select the best of the direct bargain-

ing protocals satsifying the relevant incentive constraints given correct beliefs

about the mixed/behavioral investment strategies employed by the buyer and

seller. Every equilibrium satisfying condition O would also be supported as

a Bayesian Nash equilibrium in this three player game. Although the broker

would clearly prefer equilibria in which she simply allocated the item to a

particular trader and only that trader invested, every equilibrium satisfying

condition O involves the choice of an optimal mechanism from the designer’s

perspective given equilibrium conjectures about the investing behavior and

best responses by the buyer and seller given this bargaining mechanism. The

converse is also true, any equilibrium to the 3 player game would also satisfy

the conditions to be an equilibrium that also satisfies condition O. 6 A second

motivation would be to conceive of a dynamic process where markets move

toward efficient trading mechanisms. An equilibrium satisfying condition O

can then be a steady-state to such a process.

5It is worth noting that Condition O can only hold on the path. Investments are hidden
actions and thus if a player deviates from equilibrium the broker will not know this and
cannot adjust and select the second-best given the distribution induced by the deviation.

6To clarify a potentially confusing aspect of condition O, we note that the optimality
of the bargaining mechanism given buyer and seller (possibly mixed) investment strategies
stems not from the latter reporting their choices to the designer, but from the designer
correctly conjecturing the buyer’s and seller’s equilibrium mixtures. This means that the
designer does not observe and therefore cannot react to deviations from the equilibrium
strategy by the buyer or seller. This fact is crucial to our unraveling result.
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3 Results

Let Fi be player i’s mixed-strategy equilibrium distribution over the hidden

action. Recall that our direct mechanism is a pair of functions x(ms,mb) that

describes the report-contingent transfer to the seller and a function p(ms,mb)

that determines the probability of trade. Expected gains from trade to the

seller of reporting ms in this direct mechanism, given investment vs, can then

be written as the integral7

Us(v
′
s, vs) =

∫
Vb

[x(v′s, vb)− p(v′s, vb)vs]dFb(vb) . (1)

Similarly, for the buyer we have:

Ub(v
′
b, vb) =

∫
Vs

[p(vs, v
′
b)vb − x(vs, v

′
b)]dFs(vs). (2)

In a slight abuse of notation, let Ui(vi) = Ui(vi, vi).

We note a convenient feature of the supports of investment strategies.

Since ci(0) = 0, if

ci(v̂i) > v̂i ,

then the investment v̂i is strictly dominated by vi = 0. Recall that vi is

the investment that makes c′i(vi) = 1 and so given strict convexity of the

cost function any investment higher than this level yields a payoff strictly

7Throughout we denote Lebesgue-Stieltjes integrals with dFi(vi) and Riemann integrals
by fi(vi)dvi-using the latter on intervals in which a density exists.
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less than 0. In equilibrium investments must have support contained in the

interval [0, vi]. We can then conclude that equilibrium investment strategies

always have compact support.

We now turn to the study of what types of investment strategies are

possible in an equilibrium. We find that the equilibrium conditions from

strategic investment pin down a number of characteristics of the bargaining

problem.

Theorem 1. (Mixing theorem) In any equilibrium, if vi is an accumula-

tion point of the support of i’s mixed strategy, then

1 + U ′s(vs) = c′s(vs), (3)

U ′b(vb) = c′b(vb). (4)

The proof is given in the appendix. With investment in mixed strategies,

it must be the case that for every point in the support of the investment

actions either the derivative of the cost function and the utility are equal (if

player 2) or differ by exactly 1 (if player 1). The derivative of the utility for

the trading game is pinned down by incentive compatibility so there must

be a close connection between investment strategies, their implied trading

probabilities, and the marginal cost of investment for the traders. Below,

we show that this connection precludes equilibria with investment decisions

that lead to Myerson-Satterthwaite inefficiencies.
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We start by considering the classical bilateral trading case investigated by

Myerson and Satterthwaite, where both the buyer’s and seller’s valuations

are distributed continuously over a connected domain. Myerson and Sat-

terthwaite’s classical result is that as long as the distributions of the players

overlap and have full support on an interval, no efficient mechanism exists

that is both incentive compatible and individually rational. The theorem be-

low, on the other hand, shows that such distributions cannot emerge from a

mixed-strategy investment equilibrium, if the mechanism designer is choosing

second-best mechanisms that maximize aggregate gains from trade.

Theorem 2. (No Connected Supports with IC, O, IP) Assume the

cost function is strictly increasing. When the designer chooses an optimal

IC and IP mechanism that maximizes aggregate gains from trade given the

investment strategies (condition O) there is no mixed-strategy equilibrium

with connected and overlapping supports containing no atoms.

To see this, suppose the seller and the buyer are following mixed strate-

gies with positive probability densities over [as, bs] and [ab, bb], respectively,

and that the interiors of the supports have a non-empty intersection. My-

erson and Satterthwaite show that no efficient mechanism is possible under

these assumptions. So, the aggregate gains from trade will be maximized

by a second-best mechanism characterized by Theorem 2 of Myerson and

Satterthwaite. This result states that the optimal second-best mechanism

will ensure Us(bs) = Ub(ab) = 0. This means that the lowest type buyer will

not gain any benefit from their investment. It immediately follows that any
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ab > 0 is strictly dominated by investing 0 and not paying a cost; hence

ab = 0. Now, from Theorem 1 and the envelope theorem of Myerson and

Satterthwaite we have for any incentive compatible mechanism:

c′b(vb) = pb(vb) (5)

Again, by Theorem 2 of Myerson and Satterthwaite, we know that the opti-

mal second-best mechanism prescribes trade when

vb − vs ≥ α

(
Fs(vs)

fs(vs)
+

1− Fb(vb)
fb(vb)

)
, (6)

where α ∈ [0, 1] and Fi(·) and fi(·) are the cumulative and probability density

functions for the players. Note that 1−Fb(0)
fb(0)

> 0; hence, the right-hand side

of (6) is strictly positive. This means that there exists an ε > 0, for which

1−Fb(ε)
fb(ε)

> ε; and consequently, pb(ε) = 0. In other words, even if the lower

bound of the seller’s mixed strategy is at 0, the ε-type buyer will not be

able to trade with any seller because the IC and interim participation (IP)

constraints mean that the ε type will not trade even with the 0-type seller.

However, since c′b(ε) > 0 by assumption, it follows that the buyer strictly

prefers a lower investment to the ε-investment. This means that ε cannot be

part of the equilibrium support, a contradiction.

The above result shows that “nice” lotteries over valuations and the inef-

ficiencies from Myerson-Satterthwaite cannot arise in equilibria when valua-

tions emerge from hidden investments. The reason is the wedge introduced

15



by the IP conditions in the second-best bargaining mechanism, which ensure

that the lowest type buyers cannot trade with anyone. But then these types

cannot be supported by equilibrium investment decisions.

However, Theorem 2 above does not rule out potential investment strate-

gies that involve both atoms and gaps. For example, one might think that

placing a probability mass of sellers at zero investment, and a gap between the

zero-type buyers and the next highest type in the mixed strategy’s support

might resolve the issue identified in the previous section. Therefore, we next

consider this possibility by extending the Myerson-Satterthwaite analysis to

distributions with gaps and atoms. We show that this extension might allow

efficient mechanisms satisfying IC and IP in some cases. However, we also

show that distributions that do not admit first-best efficiency in the trading

stage cannot be equilibrium mixed strategies. As a result, the conclusion that

Myerson-Satterthwaite inefficiencies cannot occur with endogenously deter-

mined investments extends beyond the case of lotteries described in Theorem

2. This result holds generally when the valuations are equilibrium choices as

modeled here.

To show this result, consider a distribution whose support consists of

an arbitrary (but countable) number of atoms, gaps, and compact intervals.

Figure 1 illustrates a simple example of such a distribution where the atoms

are at the upper and lower limits of the distribution.8 Denote by Θi the

8The following result shows that unraveling occurs if there are gaps in combination with
atoms. We can rule out the possibility of atoms in the interior of either player’s support
with standard arguments on all-pay auctions (e.g. Baye, Kovenock and De Vries, 1996)
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Figure 1: Diagram of the buyer and seller distributions. Solid lines signify
continuous supports of the players’ investment strategies.

set of atoms and by Ki the union of all compact intervals in the support

of player i’s mixed strategy distribution. We use Iji to denote the jth such

interval (counted in increasing order). Likewise, for notational convenience,

we define the sets V i and V i to be the sets of infima and suprema of the

compact intervals in the distribution of the seller and the buyer, respectively,

with vji = inf(Iji ) and vji = sup(Iji ).

To focus on efficient mechanisms, we make the technical assumption that

p(vs, vb) is left-continuous in vs and right-continuous on vb, which is satis-

fied for both efficient mechanisms and second-best mechanisms because any

discontinuity in such mechanisms will involve vb ≥ vs, and the mechanism

designer will weakly prefer trade to non-trade. Given a mechanism with

allocation function p(vs, vb) and transfer function x(vs, vb), we define the ex-

pected probability of trading for a seller that reports her type as vs, ps(vs),

and the fact that an optimal M-S mechanism induces a probability of trade equalling 0 or
1.
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with the Lebesque-Stieltjes integral:

ps(vs) =

∫ bb

ab

p(vs, tb)dFb , (7)

where ab and bb are again the lower and upper bounds of the buyer’s distribu-

tion. Under our assumptions ps is left-continuous (and pb right-continuous).

Likewise, the expected payment to the seller reporting vs is defined as

xs(vs) =

∫ bb

ab

x(vs, tb)dFb . (8)

The expected gain (relative to non-participation) for the seller from declaring

v′s when his real type is vs, is:

Us(v
′
s, vs) =

∫ vb

vb

[x(v′s, vb)− p(v′s, vb)vs]dFb . (9)

Similar definitions apply to the buyer. These integrals exist because p(·, ·)

and x(·, ·) are non-negative and Fi are monotone and right-continuous. First,

we show that the envelope theorem applies in the connected parts of the

seller and buyer’s distribution, and put bounds on the difference between the

expected payoffs for types bordering the gaps. For brevity, the proofs of the

following results are given in the Appendix.

Lemma 1. Envelope theorem with atoms and gaps Consider an IC

mechanism. For any vs ∈ Ks, the expected payoff satisfies U ′s(vs) = −ps(vs).,
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and if vs ∈ Ijs then the following holds:

Us(vs, vs) = Us(v
j
s, v

j
s) +

∫ vjs

vs

ps(ts)dts . (10)

Likewise, for any vb ∈ Kb, the expected payoff satisfies U ′b(vb) = pb(vb) and

for vb ∈ Ijb :

Ub(vb, vb) = Ub(v
j
b, v

j
b) +

∫ vb

vjb

pb(tb)dtb . (11)

For two values vs and v′s that border a gap in the seller’s distribution, we

have:

−ps(v′s) ≥
Us(vs)− Us(v′s)

v′s − vs
≥ −ps(vs) , (12)

and likewise, for two values vb and v′b that border a gap in the buyer’s distri-

bution, we have:

pb(v
′
b) ≥

Ub(v
′
b)− Ub(vb)
v′b − vb

≥ pb(vb) . (13)

For the next theorem which gives the necessary and sufficient condition

for an IP and IC mechanism to satisfy, let us denote by supp(Fi) the support
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of the distribution of player i, and the functions πs(vs) and πb(vb), as follows:

πs(vs) =


ps(vs) if vs ∈ supp(Fs)

ps(v̂s) s.t. v̂s = inf{x ∈ supp(Fs) |x ≥ vs} otherwise,

(14)

πb(vb) =


pb(vb) if vb ∈ supp(Fb)

pb(v̂b) s.t. v̂b = sup{x ∈ supp(Fb) |x ≤ vb} otherwise.

(15)

In other words, πs(vs) is equal to ps(vs) whenever vs is in the support of the

seller’s distribution, and equal to ps for the next higher point in the seller’s

distribution, if vs is not in the support. Likewise for the buyer, except if vb is

not in the support of the buyer’s distribution, πb(vb) is equal to the expected

probability of trade for the next lower point in the distribution.

Theorem 3. (Myerson & Satterthwaite with atoms and gaps).

Given buyer and seller distributions Fs and Fb, consisting of a countable

number of atoms and compact supports given by the union of intervals, for

any IC and IP mechanism (x, p) it must hold that:

∫ bb

ab

vbp(vb)dFb −
∫ bs

as

vsp(vs)dFs

−
∫ bs

as

Fs(ts)πs(ts)dts −
∫ bb

ab

(1− Fb(tb))πb(tb)dtb

≥ Us(bs) + Ub(ab) ≥ 0 . (16)

Furthermore, for any function p(vs, vb) that maps from supp(Fs)× supp(Fb)
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to [0, 1], a payment function x(vs, vb) exists such that (x, p) is IC and IP

if and only if (16) holds and ps(vs) and pb(vb) are weakly decreasing and

decreasing, respectively.

With Theorem 3, we have the following Lemma:

Lemma 2. Efficient trading mechanisms that satisfy the IC and IP con-

ditions exist for some distributions of buyers’ and sellers’ valuations when

atoms and gaps are allowed.

To prove this lemma, we only need to find an example of distributions

that satisfy the constraint (16). Suppose the distributions of the buyers

and sellers are of the sort depicted in Figure 1, i.e., both distributions have

atoms at their extreme values, and two gaps separating these atoms from the

connected part of the support. For a set of values, we can easily evaluate the

inequality (16) numerically, assuming efficient trade (i.e., ps(vs) = 1−Fb(vs)

and pb(vb) = Fs(vb)). Assume the following values (see Figure 1): bb = 1,

bs = 0.7, vb = 0.65, vs = 0.6, vb = 0.4, vs = 0.2, q
s

= 0.1, qs = 0.6, q
b

= 0.1,

and qb = 0.6. With these values the left-hand side of (16) can be numerically

evaluated, and is found to be 0.0079 > 0, even though the distributions have

overlapping support.

This example shows the Myerson-Satterthwaite Theorem fails when atoms

and gaps are allowed in the distribution of valuations. The example also com-

plements an example provided by Myerson and Satterthwaite (1983, p.273)

with overlapping support of the buyer and seller’s distribution of valuations
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and a probability function with atoms only on the end points of the distri-

bution. The failure of the impossibility result requires not just atoms but

atoms and gaps. Clearly, characterizing these conditions is crucial for de-

riving results with mixed strategies that may lead to distributions of player

valuations with atoms and gaps. As a side benefit, the lemma clarifies why

distributions without full support can lead to efficient bargaining outcomes.

Why is it possible to support efficiency with overlapping supports when

atoms and gaps exist? Even with more general distributions of valuations

the envelope theorem dictates how the probability of trade must change with

valuation levels. The presence of gaps creates slack for some types of the other

player, because the relevant deviations for these types lead to discontinuous

jumps in their utility. When the type that has slack is an atom then this

slack can effectively yield a subsidy that can be transferred to trades whose

valuation comes from the connected part of the support. The higher the mass

on the atoms the more subsidy is available to the designer to redistribute to

the rest of the types. We can then think of the designer as using the subsidy

from the atoms like a broker uses a subsidy, to create incentives for truth-

telling on the overlapping regions of the support. Therefore, efficiency tends

to be possible either when most of the probability weight is assigned to the

atoms (qi and q
i

above), leaving little probability density in the overlapping

parts of the distributions, or when the gaps between the connect range of

values and the atoms are large. Both make it easier to incentivize truth-

telling.
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When it is impossible to implement efficient incentive compatible individ-

ually rational mechanism, we have the following results about the second-best

mechanisms:

Lemma 3. Consider any gap in the seller’s distribution, and denote the

lower and upper boundary of the gap as vs and vs, respectively (i.e., vs, vs ∈

supp(Fs) but for vs < ts < vs, ts /∈ supp(Fs)). When an efficient mecha-

nism does not satisfy both IC and IP, the second-best mechanism maximizing

aggregate gains from trade has:

Us(vs) = Us(vs) + (vs − vs)ps(vs)

Similarly, consider any gap in the buyer’s distribution, bounded by vb and vb.

A second-best mechanism has

Ub(vb) = Ub(vb) + (vb − vb)pb(vb)

Using Lemma 3, we can now prove that a second-best mechanism when

efficiency is not possible rules out a mixing investment equilibrium.

Lemma 4. (Mixed investment unravels) Suppose that given Fs, Fb with

atoms and gaps there is no IC and IP mechanism that is efficient and the

designer chooses a second-best mechanism (p, x) to maximize the aggregate

gains from trade given these lotteries (condition O). Then it is not possible

to support Fs, Fb as equilibrium mixed investment strategies with (p, x) for
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any strictly convex and continuous cost functions.

Theorem 4 follows directly from Lemmas (2) and (4).

Theorem 4. There is no equilibrium satisfying conditions IP and O with the

form of inefficiency that appears in Myerson-Satterthwaite. In otherwords,

every equilibrium satisfying conditions IP and O allocates the good to the

player with a higher valuation with probability one.

3.1 Allocation inefficiency

The results above show that with pre-trade investment, there is no equilib-

rium of a trading game that has the inefficiency identified by Myerson and

Satterthwaite, and inefficient mixed investment strategies will unravel. How-

ever, even if the agent with the item invests optimally with probability 1, a

third form of inefficiency might persist, in that the agent who ends up with

the item might not be the one capable of producing the highest surplus. An

important question is then, in bilateral trade with investments, are there

failures of Coasian efficiency? That is, do there exist initial allocations of

the good such that the individual who extracts less utility from ownership

maintains or obtains the property right to the good in equilibrium?

We maintain the assumption that the good is initially assigned to one

player (the seller). In principle, a larger class of schemes involving a market

maker or auctioneer can be considered. We will say a player is the efficient

owner if she is the player who is able to generate the highest utility from the
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use of the good. In practice, such a user would have a cost function that

allows for lower production costs. First, suppose that the seller, who initially

owns the good, is the efficient user. In this situation allocative efficiency

always occurs in equilibrium. If such a seller keeps the item with probability

1, then in equilibrium, he will choose an investment level to maximize his

utility of ownership. In any equilibrium in which the buyer gets the good

with probability 0, her investment must be equal to 0.

To see that nothing else can be supported in an equilibrium, suppose the

seller trades the good. At most the buyer pays an amount

x∗ = max
vb

(vb − cb(vb)) .

However, we have assumed for this case that

max
vb

(vb − cb(vb)) < max
vs

(vs − cs(vs))

and the seller is better off not participating in the trade, keeping the good,

and investing optimally. Importantly, the buyer is never willing to pay a

price that makes the seller willing to sell and there is no equilibrium where

the seller trades the good when he is the efficient owner.

When the buyer is the efficient owner of the good, i.e., when

max
vb

(vb − cb(vb)) > max
vs

(vs − cs(vs)) ,
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the picture is more complicated and there are cases where there are equilibria

in which (i) only the seller (less efficient type) invests and (ii) the probability

of trade is 0. This happens under two conditions. The first one is when the

optimal investment by the seller is greater than the surplus generated by the

buyer’s optimal investment, i.e., when:

arg max
vs

(vs − cs(vs)) > max
vb

(vb − cb(vb)) .

When this condition holds there is no price that the buyer can pay to an

optimally investing seller that would induce trade and result in a positive

total utility to the buyer. Hence, the seller investing optimally and the buyer

not investing occurs in an equilibrium. However, the seller not investing, the

buyer investing optimally, and trade taking place, is also an equilibrium

provided that the price p satisfies

max
vb

(vb − cb(vb)) > p > max
vs

(vs − cs(vs)) .

The second case that admits an inefficient equilibrium stems from perhaps

rather peculiar cost functions. In particular, suppose again the buyer is the

efficient owner, but that

arg max
vs

(vs − cs(vs)) > arg max
vb

(vb − cb(vb)) .

In other words, even though the buyer can generate more surplus, she does
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this with a lower absolute investment level than the seller’s maximum sur-

plus. In this case, again, trade between efficiently invested sellers and buyers

is impossible. Hence, the buyer investing efficiently and the seller not in-

vesting occurs in an equilibrium. Furthermore, as in the previous case, the

efficient outcome (seller not investing, buyer investing efficiently, and trad-

ing) is also supportable in an equilibrium, as long as the price p satisfies the

same inequalities above.

Note that in both cases the inefficient equilibrium could be dispensed with

if, prior to the investment stage, the buyer can sell an option to the seller

that commits the buyer to buy at a price within the range identified with

these inequalities. In this case, the seller can always ensure a higher payoff

by not investing and selling at that price instead of investing optimally and

not trading - regardless of the buyer’s actions. Accordingly, in equilibrium,

the seller will invest 0 and sell the item. The buyer’s best response is to

invest optimally. Hence, only the efficient equilibrium remains.

To recapitulate, if the initial allocation of the good is to the inefficient

player (one who can generate less surplus), then allowing trade after unob-

servable investments does not necessarily guarantee that the best allocation

will be achieved. However, this result does not stem from private informa-

tion during the trading phase. In fact, all equilibria discussed above imply

that players will follow pure investment strategies, the inefficiencies result

from the inability of the parties to trade at a high enough price. If either

a designer or the buyer can commit to trade at a high enough price, the
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inefficient equilibria can be made to go away. Even though our results do

not guarantee first-best outcomes in the sense that the player who can make

the most out of owning the good possesses it in all equilibria, we find that

informational asymmetries are not the cause of the inefficiencies that remain

at equilibrium.

4 Related Literature

As noted above Gul (2001) shows that if the buyer’s investment is a hidden

action, then, even when the seller has all the bargaining power, the underin-

vestment problem can be resolved if repeated offers are allowed and the time

between offers vanishes. Gul also considers the case of two-sided investments

but assumes that the seller’s investment is observed prior to bargaining.9

Gul’s model only allow asymmetric information to emerge from strategic

uncertainty caused by mixed strategies and hidden actions. We share this

feature but allow for hidden actions by both players.

In the other papers on pre-bargaining investment four central distinctions

appear. In some of this scholarship the relevant fundamentals, like investment

in value, are assumed to be observable at the time of bargaining (Grossman

and Hart, 1986; Hart and Moore, 1988). More recently, Schmitz (2002),

González (2004) and Lau (2008) also consider investments as hidden actions,

however, these papers consider the case where only one player can invest

9Incidentally, Gul finds that the seller will have an incentive to underinvest, and points
out the challenges to applying his arguments to the case of a continuum of types.
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and Lau (2008) allows for partial observability of investments. Lau (2011)

considers the case of one-sided hidden investments and exogenous asymmetric

information, capturing some of the relevant tradeoffs but in her paper the

asymmetric information is not directly attributed to a choice by the players.

Perhaps closer to our paper is Rogerson (1992) who provides a quite gen-

eral treatment of the case where multiple players can invest before trade and

where there are no externalities. His case of completely private information

is closest in spirit to the environments we consider. The key distinction is

that Rogerson assumes that there is a random component connecting each

player’s investment to its type. In particular, by assuming that investment

decisions always admit unique optima, he excludes the case where invest-

ments completely determine a player’s type (as in Gul (2001) and our paper).

Rogerson also does not impose the individual rationality constraint imposed

by Myerson-Satterthwaite and thus, in principle, is free to work with a larger

set of mechanisms (he does require budget balance and incentive compatibil-

ity). Finally, Rogerson assumes that the mechanism is committed to prior to

investment decisions and shows that d’Aspremont and Gérard-Varet (1979)

and Cremer and Riordan (1985) mechanisms also create incentives for opti-

mal investment.10 We are interested in the same participation constraints as

Myerson and Satterthwaite, and focus only on mechanisms that are optimal

given equilibrium beliefs about investments. Thus, we do not analyze the

10See also Hart and Moore (1988) for a similar observation in case of two-players and
an indivisible item–as in our model.
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full-mechanism design problem in which a designer commits to a mechanism

(either before or after learning something from the traders) that is not the

constrained optimal.

As Gul (2001) notes, a common feature of his result and the literature

on moral hazard and renegotiation (Che and Chung, 1999; Che and Hausch,

1999; Fudenberg and Tirole, 1990; Hermalin and Katz, 1991; Ma, 1991, 1994;

Matthews, 1995) is that pure strategies by the agent generate strong reac-

tions from the principal and thus, in equilibrium, the agents’ randomiza-

tion generates asymmetric information. Our analysis offers a counter-point

to this result. The presence of randomization by both traders is typically

hard to support, and impossible to support when they admit no first-best

trading mechanisms, and if the traders anticipate that a designer is using a

second-best mechanism. One possible exception to this result occurs if the

investment cost functions support an equilibrium in which the buyer and

seller mix over a small interval and disconnected atoms, with most of the

probability being allocated to the atoms. In cases like this first best trading

rules exist, even though there is overlap in the supports. Therefore, this form

of strategic uncertainty is not consistent with the inefficiency that emerges

in Myerson and Satterthwaite, as first-best becomes possible with this infor-

mation environment.
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5 Conclusion

Sometimes the value of a trade between two economic agents is determined

by choices that the traders make prior to the transaction. In these circum-

stances a rational expectation about how the trading game might be played

can be seen to have important effects on the incentives to invest and, as a

consequence, generate bilateral trade games where the information environ-

ment looks very different from those well-studied in the economics litera-

ture. When valuations are the product of hidden pre-trade investment, the

standard connected set of types cannot emerge as the result of equilibrium

mixing. Furthermore, in every equilibrium of the trading game, given invest-

ments, trade occurs in every instance where the net gains are positive. In

short, this means that the Myerson-Satterthwaite inefficiencies do not arise

in these environments.

We see that hidden investments by two players is qualitatively different

than one-sided hidden actions in one fundamental way. In the one-sided case

the hold-up problem is somewhat dependent on the presence of inefficiencies

in bargaining. With two sided investments these forms of inefficiency are not

complimentary. The possibility of the inefficiency in bargaining destroys the

possibility of inefficiencies in investments.
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6 Appendix

Proof. Theorem 1. Consider an equilibrium involving the direct mechanism

(x, p). To begin, consider the case of the seller. Take any two investments

vs, v
′
s in the support of Fs. Then, because the seller is mixing over these

values

∫
Vb

(1− p(vs, vb))vs + x(vs, vb)dFb(vb)− cs(vs) =∫
Vb

(1− p(v′s, vb))v′s + x(v′s, vb)dFb(vb)− cs(v′s) .

The left-hand side equals

Us(vs)− cs(vs) + vs,

and the right-hand side equals

Us(v
′
s)− cs(v′s) + v′s,

and we can rewrite the equation above as

Us(vs)− cs(vs) + vs = Us(v
′
s)− cs(v′s) + v′s (17)

1 +
Us(vs)− Us(v′s)

vs − v′s
=
cs(vs)− cs(v′s)

vs − v′s
. (18)

At an accumulation point of the support of Fs, we can take the limits as
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v′i → vi and

1 + U ′s(vs) = c′s(vs). (19)

This is the first equation in the theorem. Similar calculations give the identity

for the seller.

Proof. Proof of Lemma 1 The proof follows the familiar argument of My-

erson and Satterthwaite. Incentive compatibility means that for all vs, v
′
s in

the support of the seller’s distribution:

Us(vs, vs) ≥ Us(v
′
s, vs) (20)

Us(v
′
s, v
′
s) ≥ Us(vs, v

′
s) . (21)

By subtracting the RHS of the second inequality from the LHS of the first

and the RHS of the first from the second and canceling the payment terms,

we get:

−ps(vs)[vs − v′s] ≥ Us(vs, vs)− Us(v′s, v′s) ≥ −ps(v′s)[vs − v′s] .

For either vs or v′s in Θs, we can stop here. For vs ∈ Ks and vs /∈ V s, we

assume vs > v′s, divide by vs − v′s and take the limit as v′s → vs to obtain:

U ′s(vs) = −ps(vs) . (22)

For vs ∈ V s we simply take the limit from the right, with v′s > vs to obtain
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the same result. Integrating equation (22) within an interval Ijs , we obtain

(10) The same method applies to the buyers.

Proof. Proof of Theorem 3

The proof proceeds analogously to the canonical case (theorem 1 of Myer-

son and Satterthwaite), except that we need to make use of Lebesgue-Stieltjes

integrals to account for the fact that we integrate over distributions that have

gaps and atoms. First, observe that Lemma 1 implies that Us(bs) ≤ Us(vs)

for all vs in the seller’s support, and Ub(ab) ≤ Ub(vb) for all vb in the buyer’s

support. Next, consider the expected gains from trade under a direct mech-

anism (x, p).

∫ bs

as

∫ bb

ab

(vb − vs)p(vs, vb)dFbdFs =

∫ bs

as

∫ bb

ab

vbp(vs, vb)dFbdFs

−
∫ bs

as

∫ bb

ab

−vsp(vs, vb)dFbdFs

=

∫ bb

ab

vbp(vb)dFb −
∫ bs

as

vsp(vs)dFs , (23)

where the last line follows from integrating the two integrals in different

orders, permissible by Tolleni’s theorem.

At the same time, since the payments are zero sum, the expected gains

from trade is equal to the sum of the average gains of the buyers and sellers:

∫ bs

as

∫ bb

ab

(vb − vs)p(vs, vb)dFbdFs =

∫ bs

as

Us(vs)dFs +

∫ bb

ab

Ub(vb)dFb (24)
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Take the seller’s term, the first integral. Using the envelope theorem (Lemma

1) and using the definition of the function πs(vs) above, we can write

Us(vs) ≥ Us(bs) +

∫ bs

vs

πs(ts)dts (25)

So, we have:

∫ bs

as

Us(vs)dFs ≥
∫ bs

as

[
Us(bs) +

∫ bs

vs

πs(ts)dts

]
dFs

= Us(bs) +

∫ bs

as

∫ bs

vs

πs(ts)dtsdFs = Us(bs) +

∫ bs

as

Fs(ts)πs(ts)dts ,

where the change in the order of integration again is permissible by Tolleni’s

theorem. Similarly for the buyer, we have:

∫ bb

ab

Ub(vb)dFb ≥
∫ bb

ab

[
Ub(ab) +

∫ tb

ab

πb(tb)dtb

]
dFb

= Ub(ab) +

∫ bb

ab

(1− Fb(tb))πb(tb)dtb .

Putting these together, we have:

∫ bb

ab

vbp(vb)dFb −
∫ bs

as

vsp(vs)dFs ≥ Us(bs) + Ub(ab)+∫ bs

as

Fs(ts)πs(ts)dts +

∫ bb

ab

(1− Fb(tb))πb(tb)dtb , (26)
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or,

∫ bb

ab

vbp(vb)dFb −
∫ bs

as

vsp(vs)dFs

−
∫ bs

as

Fs(ts)πs(ts)dts −
∫ bb

ab

(1− Fb(tb))πb(tb)dtb ≥ Us(bs) + Ub(ab) ≥ 0 .

(27)

This proves the “only if” part of theorem 3. To prove the “if” part, we

need to show that for a function p(·, ·) satisfying (16), and when ps(·) and

pb(·) are weakly decreasing and increasing, respectively, a payment function

exists that makes the mechanism satisfy IC and IP. First, we observe that

for ps(·) and pb(·) are weakly decreasing and increasing, respectively, πs(·)

and πb(·), defined in (14) and (15) are also weakly decreasing and increasing,

respectively.

Next, consider the following payment function:

x(vs, vb) = χb(vb)− χs(vs) +K , (28)

where χs(·) and χb(·) are given by the Lebesgue-Stieltjes integrals:

χb(vb) =

∫ vb

tb=ab

tbd[πb(tb)] (29)

χs(vs) =

∫ vs

ts=as

tsd[−πs(ts)] (30)

and K is a constant. To see that this payment function satisfies incentive
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compatibility, consider for any pair vs, v
′
s in the seller’s support:

Us(vs, vs)− Us(v′s, vs) = −vs(ps(vs)− ps(v′s))− χs(vs) + χs(v
′
s)

Since πs(vs) = ps(vs) whenever vs is in the support of the seller, we have

ps(vs)−ps(v′s) = −
∫ vs
ts=v′s

d[−πs(ts)], and−χs(vs)+χs(v′s) = −
∫ vs
ts=v′s

tsd[−πs(ts)]

thus we have:

Us(vs, vs)− Us(v′s, vs) =vs

∫ vs

ts=v′s

d[−πs(ts)]−
∫ vs

ts=v′s

tsd[−πs(ts)]

=

∫ vs

ts=v′s

(vs − ts)d[−πs(ts)] ≥ 0 , (31)

since πs(·) is a weakly decreasing function. The proof for the buyer proceeds

analogously.

Now, consider the difference Us(v
′
s)−Us(vs) for some v′s ≤ vs in the seller’s

support:

Us(v
′
s)− Us(vs) =− v′sps(v′s) + vsps(vs)− χs(v′s) + χs(vs)

=− v′sps(v′s) + vsps(vs) +

∫ vs

ts=v′s

tsd[−πs(ts)]

=− v′sps(v′s) + vsps(vs) +

∫ vs

ts=v′s

πs(ts)dts −
[
tsπs(ts)

]vs
ts=v′s

=

∫ vs

ts=v′s

πs(ts)dts , (32)

where the second to last step follows from integration by parts (we note that
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ps is left-continuous and non-increasing under our assumptions), and the last

step is due to the fact that πs(vs) = ps(vs) by definition whenever vs is in

the support of the seller. Thus, the payment function (28) yields for any vs

in the seller’s support:

Us(vs) = Us(bs) +

∫ bs

ts=vs

πs(ts)dts (33)

A similar calculation shows that for any vb in the buyer’s support, we have:

Ub(vb) = Ub(ab) +

∫ vb

tb=ab

πb(tb)dtb (34)

These two relations imply that under this payment function, the inequality in

(25) (and the corresponding one for the buyer) is satisfied with equality, and

through the steps that follow, the first inequality in (16) must also be satisfied

with equality, and that if the LHS of it is non-negative, Us(bs) +Ub(ab) must

also be non-negative.

Now consider Us(bs). We have

Us(bs) =

∫ bb

ab

(x(bs, vb)− bsp(bs, vb))dFb

=

∫ bb

ab

∫ vb

tb=ab

tbd[πb(tb)]dFb −
∫ bs

ts=as

tsd[−πs(ts)] +K − bsps(bs)

=

∫ bb

tb=ab

(1− Fb(tb))tbd[πb(tb)]−
∫ bs

ts=as

tsd[−πs(ts)]− bsps(bs) +K

(35)
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Setting

K = −
∫ bb

tb=ab

(1− Fb(tb))tbd[πb(tb)] +

∫ bs

ts=as

tsd[−πs(ts)] + bsps(bs) (36)

ensures that Us(bs) = 0. Since, in addition, we assume that the LHS of

(16) is non-negative, and have shown that it is equal to Us(bs) + Ub(ab), it

must follow that Ub(ab) is also non-negative. This implies, by the envelope

theorem, that the mechanism is IP for all buyer and seller types.

Proof. Proof of lemma 3

We will prove the lemma for the case of the seller; the proof works exactly

the same way for the buyer.

For a certain trading probability function p(vs, vb), that yields non-increasing

and non-decreasing ps(·) and pb(·), respectively, consider a mechanism result-

ing in the following relationship at the focal gap in the seller’s distribution:

Us(vs) = Us(vs) + (vs − vs)(ps(vs) + γ)

where 0 ≤ γ ≤ (ps(vs)−ps(vs)), such that incentive compatibility is satisfied

for the sellers of type vs and vs. Under this mechanism, for all vs ≤ vs, the

envelope theorem will have an additional payoff increment γ(vs − vs) for all
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vs ≤ vs, so we need to modify inequality (25) to read:

Us(vs) ≥


Us(bs) +

∫ bs
vs
πs(ts)dts + γ(vs − vs) for vs ≤ vs

Us(bs) +
∫ bs
vs
πs(ts)dts for vs > vs

(37)

Furthermore, by choosing the following payment function, we can make sure

that (37) is satisfied with equality

x(vs, vb) =


χb(vb)− χs(vs) +K + γ(vs − vs) for vs ≤ vs

χb(vb)− χs(vs) +K for vs > vs

, (38)

This statement follows straightforwardly from the same calculations as in the

proof of the if part of theorem 3. To see that the payment function remains

IC, note that for the buyer and vs, v
′
s ≤ vs or vs, v

′
s > vs the addition of a con-

stant on to payment function makes no difference for incentive compatibility.

For v′s ≤ vs < vs ≤ vs, we have

Us(vs, vs)− Us(v′s, vs)

=− vs(p(vs)− ps(v′s))− χs(vs) + χs(v
′
s)− γ(vs − vs)

≥
∫ vs

ts=v′s

(vs − ts)d[−πs(ts)]− (ps(vs)− ps(vs))(vs − vs) ≥ 0 , (39)

where the first inequality follows from the upper limit we imposed on γ, and

the last one from the fact that ps(·) is a non-increasing function. It is easy

to verify this payment function results in (37) being satisfied with equality.
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Retracing the steps that lead up to (27) in the proof of Theorem 3, we

can then arrive at a modified condition:

G(γ) ≡
∫ bb

ab

vbp(vb)dFb −
∫ bs

as

vsp(vs)dFs − γ(vs − vs)Fs(vs)

−
∫ bs

as

Fs(ts)πs(ts)dts −
∫ bb

ab

(1− Fb(tb))πb(tb)dtb = Us(bs) + Ub(ab) ≥ 0 ,

(40)

where we have defined the left hand side as G(γ).

Now, the second-best mechanism is given by maximizing the aggregate

welfare subject to (40), i.e., maximizing the Lagrangian through the choice

of p(·, ·) and γ:

L =

∫ bb

ab

∫ bs

as

(vb − vs)p(vs, vb)dFsdFb + λG(γ) , (41)

where λ ≥ 0 is a Lagrange multiplier. But since G(γ) is decreasing in γ and

γ is bounded by zero from below (by the envelope theorem), the maximum

of the Lagrangian requires γ to be zero, which finishes the proof.

Proof. Proof of Lemma 4 To prove Lemma 4, we will focus on a gap of the

seller’s candidate mixed investment equilibrium; similar arguments apply for

the buyer. First, note that the mixing condition for the seller is given by:

vs + Us(vs)− cs(vs) = v′s + Us(v
′
s)− cs(v′s) , (42)

45



for any vs, v
′
s in the support of the seller’s mixed strategy. Hence, for a pair

of values vs, vs bordering a gap, we must have Us(vs) − Us(vs) = vs − vs +

cs(vs)− cs(vs). Dividing by vs − vs, we get:

1 +
cs(vs)− cs(vs)

vs − vs
=
Us(vs)− Us(vs)

vs − vs
= ps(vs) , (43)

where the last equality follows from Lemma 3 for a second-best mechanism.

From the convexity of the cost function, we have:

1 +
cs(vs)− cs(vs)

vs − vs
= ps(vs) < 1 + c′s(vs) , (44)

Now, consider a deviation from a candidate mixed-strategy equilibrium where

a seller invests at vs − ε, but reports vs. For small ε, the expected change in

payoff from this deviation is given by:

(1− ps(vs) + c′s(vs))ε > 0 , (45)

meaning that such a deviation will be profitable. Hence, the candidate equi-

librium is not an equilibrium strategy. This implies there cannot be any gaps

in the seller’s equilibrium investment strategy.
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