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Abstract

In this paper we derive a statistical estimator to be used when the data generating process
is best described as an equilibrium to the popular ultimatum bargaining game with private in-
formation and private values. This procedure gives the analyst the ability to estimate the effect
of substantively interesting covariates on equilibrium behavior in this work horse bargaining
model. Using Monte Carlo analysis we explore the small sample properties of this estimator
and compare how the inference one makes with this model differ from those generated by linear
and generalized linear models. We end by demonstrating the real world effect of using our es-
timator with a re-analysis of results from ultimatum lab experiments where subject covariates
are hypothesized to explain bargaining behavior. We find, contrary to the experimental claim,
there is no evidence of a uniform “national” effect on offers in this data when the bargaining
estimator is used and that many demographic characteristics and their interactions are good
predictors of bargaining behavior.
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1 INTRODUCTION

Over the last twenty years, formal models and quantitative analyses have come a long way toward
explaining how strategic actors bargain in a variety of political settings. (Banks 1990, Bennett 1996,
Baron 1989, Fearon 1995, Huth and Allee 2002, Laver and Schofield 1990, London 2002, Morrow
1989, Wagner 2000, Powell 1987, Powell 1996). Game theory, in particular, has proved to be a
useful tool for understanding the basic logic of bargaining in the face of conflicting interests. If the
frequency with which a single idea or framework is cited or used in the literature is a measure of its
importance, then the importance of bargaining models cannot be denied. For example, bargaining
models have been applied by political scientists to analyze everything from the effects of open and
closed rules on the distributive politics of legislative appropriation to the study of war initiation
and termination (Baron and Ferejohn 1989, Fearon 1995, Mansfield, Milner and Rosendorff 2000).
In fact, the theoretical and empirical study of bargaining is one of the few places where the different
subfields of political science can identify one phenomenon that all agree is important and worthy
of attention.

Results of numerous theoretical studies of the bargaining problem have pointed to the impor-
tance of asymmetric information and the “reservation values” of players in distributional politics.
Yet, as is usually the case when scholars try to bring their theoretical model to the data it is dif-
ficult to specify the link between substantive variables, theories, and outcomes. This makes many
hypotheses difficult to operationalize and even more difficult to test. Additionally, it is often the
case that we would like to know the effects of particular substantive variables, like a congressman’s
district demographics or whether a state possesses nuclear weapons, on the bargaining process.
The theoretical models tell us something about the path by which these variables may influence
outcomes. However, there is no “canned” statistical estimator for examining these effects.

As an alternative to the “theory down” approach to understanding bargaining, an increasingly
sophisticated body of work has looked directly at the empirical relationship between substantive
variables of interest, such as regime type, economic interdependence, institutional rules, legisla-
tive composition, and bargaining outcomes (Bennett 1996, McCarty and Poole 1995, Milner 1997,
Werner 1999). However, lacking an explicit model of the process that generates the empirical data,
and leaving out the choice-based path by which these variables influence decisions, it is often the

case that selection and omitted variable bias plague the analysis (King, Keohane and Verba 1994).



In particular, Signorino demonstrates that traditional linear and categorical estimation techniques
can lead to faulty inferences when the strategic data generating process is ignored during estima-
tion (Signorino 1999, Signorino 2002, Signorino and Yilmaz 2003). It is unclear how reliable the
inferences from these empirical models are given these findings.

What is called for in the bargaining literature is an integration of formal theoretical models
and statistical methods. In particular, analysts need a statistical tool that permits them to make
theoretically consistent inferences about the relationship between substantive variables, the bar-
gain struck, and the probability of bargaining failure. In other words, we need an estimator that
explicitly models the strategic data generating process.

To move in this direction, we derive a statistical model for ultimatum bargaining games. Our
work is closely related to others in political science and economics. Many have consider the struc-
tural estimation problem in various environments (Wolpin 1987, Reiss and Wolak 2007). The work
most closely related to ours is McKelvey and Palfrey (1996) and various papers by Merlo and his
co-authors (Merlo and Wilson 1995, Merlo 1997, Merlo 1997, Diermeier, Erslan and Merlo 2003).
These articles consider bargaining games with finite numbers of offers and a quantal response de-
cision model or bargaining problems with a continuum of possible settlements embedded within a
government formation procedure and no private information. Other structural models close to ours
analyze crisis games with incomplete information and discrete choices Schultz and Lewis (2003) and
Esarey, Mukherjee and Moore (2008). This paper brings these two ideas into one model, creating
a model where players have private information about their value of no agreement and explicitly
bargain over a continuously divisible prize. Our analysis is also relevant to a debate about the
role of comparative statics and methods for estimating them in a strategic setting (Carruba, Yuen
and Zorn 2007). Our re-analysis of one of the only bargaining experiment to collect and release
participant co-variates shows how the issues of this debate play out in practice. In particular, when
comparative statics are unconditionally monotonic linear methods can estimate the same sign as a
structural model, but misses the effect size, the implied change in outcomes, and can find variables
insignificant because of poor model fit. As we will see, this can have important implications for the
substantive story one takes away from the analysis of data.

The paper begins by deriving an econometric estimator for the bargaining model that explicitly

captures the relationship between the variables that affect the players’s utilities and the outcomes



of the bargaining in a strategic setting. Next, we conduct a Monte Carlo experiment by generating
strategic bargaining data and then estimating the relationships between the regressors and the
dependent variable(s). We estimate not only the statistical bargaining model, but also traditional
OLS and censored variable models to give a point of reference for understanding the Monte Carlo
results. We also explore the small sample properties of our estimator to better understand its
reliability and power in smaller data sets often found in political science. Finally we demonstrate
demonstrating the real world effect of using our estimator with a re-analysis of results from ulti-
matum lab experiments where subject covariates are hypothesized to explain bargaining behavior.
We find, contrary to the experimental claim, there is no evidence of a uniform “national” effect on
offers in this data when the bargaining estimator is used and that many demographic characteristics

and their interactions are good predictors of bargaining behavior.

2 THE MODEL

Political decision-making is often fundamentally a bargaining problem. That is, the essence of
strategic decision-making between states, parties or leaders is largely about who gets what and
when. One of the simplest and most popular bargaining models is the ultimatum game. In this
section, we describe this bargaining model and then define a statistical model consistent with that
data generating process. The estimator derived in the following section will be a straightforward

structural implementation of the strategic model described below.

2.1 The Ultimatum Game

Consider the usual bargaining arrangement, depicted in Figure 1, where two players must divide
a contested prize. The issue being bargained over could be territory, a budget, or some policy in
a l-dimensional space. We represent this contested prize as a closed and bounded interval in R.
Without further loss of generality, we consider normalized intervals of the form [0, Q).

To start, player 1 offers some division of the prize (Q —y, y), where player 1’s allocation is Q —y
and player 2’s is y. Player 2 then decides whether to accept or reject player 1’s offer. If player 2
accepts, they divide the prize according to player 1’s offer. If player 2 rejects the offer, they receive

some reservation amount, which may differ between the players.
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Accept Reject
Q-y Ri+ &
y R+ &

Figure 1: Ultimatum Game

Our information structure follows a prominent one found in much of the applied bargaining
literature. We assume that the players and the analyst have complete information about the size of
the pie @ and about player 1’s offer y. We also assume that each player’s reservation utility has two
components: one that is public R; and one that is private ¢;. From a game theoretic perspective,
the private component ¢; defines player i’s type. From an econometric perspective, the reservation
utilities are random utility functions in the sense of Luce (1959) and McFadden (1976).

Finally, assume that each player i’s type ¢; is an independent and identically distributed random
variable, drawn from a well defined probability distribution F, on R, with density f,. Let this
random variable have mean 0 and finite variance. Also assume that the players’ (and analyst’s)
prior beliefs regarding the other player’s type are F¢,.

It is worth noting that, while this is not the most general information structure one might con-
sider, it is consistent with many substantively motivated models. Here players’ types are private
values, and do not directly influence the other players payoffs over outcomes. Private value uncer-
tainty like this is found in a variety of common applied bargaining models, like those where the

costs of war or litigation are privately known or situations where the type of a player (for example



those that are “resolved” or those facing domestic audience costs) most directly affects the costs or
benefits of bargaining failure. Alternatively, players could have shocks to common valued compo-
nents of their utilities, implying correlation in payoffs, or independent shocks to each settlement.
These different information structures imply completely different strategic and structural models
and we do not consider them here.

In this game each player’s strategy can be characterized by a mapping from types into actions:
o; i€, — A’ i = {1,2}, where A’ defines the actions available to player i. Since player 1 is making
the ultimatum offer her action, or proposal, can be represented by a number in [0, Q]. Player 2 is
then left to accept or reject the offer, so A% = {accept, reject}.

Assuming the players utilities are linear in the share of the pie, our random utility structure
and information assumptions lead to the following simple utilities over outcomes and the game tree

found in Figure 1:

ui(y,accept) = Q—vy
us(y,accept) = y
ui(y,reject) = Ri+ €
uz(y,reject) = Rg+ €9

In equilibrium, the ultimatum game has player 1 making an offer that balances the marginal
utility of increasing the probability that an offer is accepted and the marginal utility of a larger

amount of y. Player 2, knowing her own type, chooses the alternative that maximizes her utility.

2.2 Existence and Uniqueness of Equilibrium

An equilibrium to such a “statistical” ultimatum bargaining game, where each player knows the
other has random utilities, is equivalent to a perfect Bayesian Nash equilibrium of a game in which
the types of the players are private information and those types reference private value components

of players’ utilities. This means we can use well-known game theoretic tools to begin to specify

!Different sources of private information can induce different equilibrium behavior. For a formal discussion of
these in a crisis bargaining setting, see Fey and Ramsay (2009). For the econometric issues for discrete choice games

in extensive form, see Signorino (2003).



2 Recent research has shown that

both our theoretical predictions and our empirical estimator.
traditional existence results do not guarantee the existence of an equilibrium in Bayesian games
with unbounded type spaces and continuous actions sets (Meirowitz 2003). It is, however, easy to
show that there always exists a generically unique perfect Bayesian equilibrium to this ultimatum

game. Proposition 1 gives a sufficient condition for this to be true in our game.

Proposition 1. If F,, is log-concave, then there exists a unique perfect Bayesian-Nash equilibrium

to the statistical ultimatum game.

This result is not surprising, as this game is closely related to the ultimatum game of Fearon
(1995), whose Claim 2 showed the existence of a generically unique equilibrium for his game. We
therefore leave the rather tedious proof for the appendix, and instead sketch the logic of each
player’s equilibrium choice. From this discussion uniqueness of the equilibrium will be obvious. To
start, assuming player 1 has made an offer y, player 2 chooses between that offer and her reservation
value Ry 4 €2. In any equilibrium player 2 has an easy question to answer, which is better: the
settlement or disagreement? Thus in any equilibrium player two plays a simple cutpoint strategy
where types who prefer the settlement to their reservation payoff accept offers and the remaining
types reject.?

Player 1 can reason that player 2 will choose in such a way, given the offer she makes, but as
player 1 does not observe e, she must assess the probability that player 2 will accept his offer.
In equilibrium, player 1 correctly conjectures two will player her cutpoint strategy, so the relevant

question for one is: what is the probability that 2 accepts an offer y? Given Fy and two’s strategy

it must be
Pr(acceptly) = Pr(y > Ry + e2)
= Pr(ea <y— Ry)
= Fo(y— Ra). (1)
2For examples of work on statistical game theory see McKelvey and Palfrey (1996), Beja (1992), van Damme
(1991).

3The equilibrium is generically unique because there are many things player 2 could do when she is indifferent and
no matter which action she takes in that special case, player 1’s offer strategy is unaffected, so they are all consistent

with equilibrium.



Now, player 1 has a simple concave optimization problem, given two’s strategy. His expected

utility from an offer y € [0, Q] is

Bui(y|Q) = Fey(y — R2) - (Q —y) + (1 — Foy(y — R2)) - (Ry + e1),

subject to the constraints that 0 <y < ). By the F.O.C. and the log-concavity of fc,, 1’s optimal

offer is the unique y* that implicitly solves

FE2 (y* - R2)
Fuly” —Ra)’ @)

when the constraints on the optimization problem are slack, and is 0 or () otherwise. This single

Y=Q—-Ri—e—

optimization problem and the binary choice described above completely characterize rational play
to this game and, therefore, the equilibrium is unique.

An important question concerns how the optimal offer changes with changes in the reservation
values. Moreover, because the observable reservation values are specified with regressors, we would

like to understand the comparative statics for two cases: (1) for regressors that appear either in X

or Z, but not both; and (2) for regressors that appear in both X and Z. Let m(x) = 1;62((;0)) We
€2

leave the proof for the appendix and simply note the following:
Proposition 2. Suppose

e Regressor x appears only in X3, with associated coefficient B,
e Regressor z appears only in Zv, with associated coefficient ~y,; and

e Regressor v appears in both X3 and Z~, with associated coefficients B, and ~,, respectively.
Then the unconstrained optimal offer y* will be

e Unconditionally monotone in x with direction sign(dy*/dz) = sign(—03,),
e Unconditionally monotone in z with direction sign(dy*/dz) = sign(7.),

e Conditionally monotone in v if and only if sign(dy*/dv) = sign [y,m/(y* — 27, — vy) — By

is constant for all v, and nonmonotonic in v otherwise.*

“We use the terms “unconditionally monotone” and ”conditionally monotone” as defined in Signorino & Yilmaz
(2003:563-64). g(z,y) is said to be conditionally monotone in z if sign(dg(x,y)/dx) is constant for all x, conditional
on y. g(z,y) is said to be unconditionally monotone in z if sign(dg(z,y)/dz) is not only constant for all = but also
in the same direction regardless of y. We also thank an anonymous reviewer for pointing out we can give this more

general proposition than we had in previous drafts.



The intuition here is relatively straightforward. Increasing player 1’s reservation value (via )
decreases the amount she is willing to offer player 2. Conversely, increasing player 2’s (observable)
reservation value (via z) increases the amount player 1 thinks she will need to offer player 2. If
both of these countervailing pressures are present simultaneously (e.g., when a variable like v enters
both reservation values), then the relationship is more complicated. Depending on the magnitudes
and signs of the coefficients (3, and ~,, the optimal offer may be nonmonotonic in v. It is worth
noting that the above results are for the unconstrained optimal offer. When the constraints are

applied, the strict monotonicity results reduce to weak monotonicity due to potential censoring.

3 THE LocIiT ULTIMATUM ESTIMATOR

For the remainder of this paper we study a particular class of distribution functions for the error
term and explore the statistical properties of the resulting estimator. Let us assume we have data
on both player 1’s and player 2’s actions — i.e., assume we can measure and code y and () for each
observation, as well as whether player 2 accepted or rejected the offer. Let the public portion of
the players’ reservation values be Ry = XG,and Ry = Z~, where X and Z are sets of substantive
regressors. Our interest is in estimating the effects of X and Z on y and player 2’s decision.’
Because the outcome of the bargaining model consists of two dependent variables — 1’s offer
and 2’s decision — our probability model is a joint density over those random variables. Recall from
Proposition 1 that the requirement for uniqueness (in combination with existence) is log-concavity
of F,,. For our estimator, we will assume that the players’ types, €; and ey, are drawn i.i.d logistic.
The i.i.d. assumption greatly simplifies matters by reducing the joint density to the product of
two univariate densities. Moreover, Bagnoli and Bergstrom (2005) demonstrate that the logistic
distribution is log-concave, so we have existence and uniqueness of the logit ultimatum equilibrium.
Although our results require only log-concavity of €5 the most natural assumption is to treat the

players symmetrically, which is what we do here.

Given the distributions on €; and €9, the structural estimator for this statistical bargaining

°In this case, we assume all players and the analyst share the same public information embodied in the regressors
X and Z, as well as their effects 8 and v on the dependent variables. This may not always be an appropriate
assumption. In another paper, Kedziora, Ramsay and Signorino (2009) examine a statistical model where the analyst

has more information about players than the players have about each other.



game can be derived straightforwardly. First, consider player 2’s decision concerning whether to

accept or reject player 1’s offer. Since Fr, is logistic, Equation 1 is just the logistic probability

Pr(acceptly) = Ay —Z7)

= {l+exp[—(y—Z7)/s2]} " (3)

where A(-) is the logistic c.d.f. and sy is the logistic scale parameter for €3.6 Although we usually
ignore scale parameters in logit and probit models because of identification, the scale parameters
are identified in the logit ultimatum estimator. We will return to this later.

For player 1, the distribution of y*(e1), is more complicated. Equation 2 provided the implicit
equilibrium condition for player 1’s optimal offer. Substituting the logistic distribution for F¢, gives

Aly” — Zv)
Y=Q-XB—-ea — 0 (4)
ANy* = Z)
where A(-) is the logistic p.d.f.

At this point, we must solve for y* in terms of player 1’s type e¢1. Then, given that the analyst

does not observe €1, we must derive the probability of observing a given offer y*, based on the

assumed distribution for €;. Solving for y* as a function of €; produces

. 2
oy 1 5o [L 4 e W =2)/5]
Yy (61) = Q-Xf—e - 14 e~ W —2Zv)/s2 ’ e~ —2Zv)/s2
= Q—-XB—€e —59 [1 + e(y*—ZV)/SZ] (5)
Q—XpB—€e1—s9—Z
- Q—Xﬁ—61—82[1+W<eS§M>} (6)

where W is Lambert’s W.” Simple differentiation of y* with respect to €, shows that y* is a

monotonic function of €; and, therefore, we can derive the density function for equilibrium offers.

%A logistically distributed random variable ¢ with scale parameter s has variance V(e) = n2s%/2.
"Lambert’s W solves transcendental functions of the form z = we® for w. For a discussion of Lambert’s W and the

algorithm to solve the transcendental equation see Corless, Gonnet, Hare, Jeffrey and Knuth (1996), Fitsch, Shafer
and Crowley (1973), Barray and Culligan-Hensley (1995), and Valluri, Jeffrey and Corless (2000). Lambert’s W has
nice properties and makes the probability distribution of y* easy to characterize. First, Lambert’s W is single valued
on Ry, and since e* > 0 for all o € R, it is single-valued where we need to use it. Second, W’s first and second

derivatives exist and are well behaved.
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To derive the density for the optimal offer f,(y*), we apply the method of monotonic transfor-

mation (Casella and Berger 2002, Thrm 2.1.5), producing®

—Q—-y*—XpB—s2 1+e(y*7z’y)/32 /81
ey = & | * / g 1+ (7)
Y R e e e

with cumulative distribution function

1
F* * == * 8
Y (y ) 1 +6{Q_y*_X5_82[1+5(y 7Z'y)/52]}/51 ( )

The constraint on the action space of player 1, however, implies that the observed y* is censored
both from above and below. This censored distribution of offers leads to the following likelihood.
Let y be the observed offer and define a set of dummy variables d; k& € {0,y,1} such that o = 1
ify=0,6,=1if0<y <, and §; =1 if y = Q. That is, much like a censored (Tobit) model,
we can think of there being a “latent” best offer that we only observe when its realization is in the
constraint set. Otherwise we see the best feasible offer, i.e., a boundary point. Next, code player
2’s acceptance as dqccept = 1 if she accepted the offer and dgecept = 0 if she rejected the offer.?
Assuming we have data on both player 1’s and player 2’s actions (i.e., y and dgccept), then the

likelihood would be

n

L= [I{R-O" f@"-1-F@ x

i1
Pr(accept|y)®er - [1 - Pr(accept|y)]1—5accept} )

where the observation index has been omitted. Deriving the log-likelihood from this is straightfor-
ward. We then have a log-likelihood function for our data in terms of distributions already derived,
which are functions of our regressors, and an explicit model of the ultimatum game. Estimates of
B, v, s1, and s may be obtained using maximum likelihood estimation (or, with simple extension,
via Bayesian MCMC).

It is interesting to note that all of the parameters — (3, 7, s1, and sy — are individually
identified in this model. Typically, in logit or probit models, we can only estimate the regression

parameters and the variance parameter to scale. In this case, identification of v and ss are driven

8Derivation using the method of transformations is shown in the appendix.
9For a similar random utility motivation for censoring see Amemiya (1984).
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by our assumptions concerning what the players know and how that enters their payoffs. Consider
Equation 3, player 2’s probability of accepting. If no regression parameter is associated with the
offer y, then the usual logit (or probit) identification issue is not present here. It is important to
note that this is not an ad hoc assumption made to ensure identification. Rather, we started by
assuming that the players were bargaining over a known pie () and that player 1 makes a known
offer y. It is this shared observability of the offer y that identifies v and s5 in Equation 3.

The regression and variance parameters are also identified through player 1’s choice. Equations 7
and 8 show that s; and sg interact with terms (e.g., @, y*, and 1) with which no other regression
parameters are associated. In other words, a change in s; or sy cannot be “compensated” with
a change in 3 or v to produce the same probability value. The noteworthy aspect of these two
equations is that player 2’s parameters are identified through our assumptions about player 1’s
information concerning player 2.

Finally, suppose we had data only on player 2’s or player 1’s actions, but not both. For a given
dependent variable (i.e., player 1 or player 2’s action), we could simply use the appropriate density

(already derived) as the basis of our log-likelihood equation.

4 MONTE CARLO ANALYSIS

In this section, we present two sets of Monte Carlo analyses. In the first, we conduct an analysis of
the small sample properties of the estimator. In the second, we demonstrate the bias that can occur
when typical regression techniques (e.g., OLS, FGLS, and Tobit) are used to analyze bargaining

data, even when the underlying relationships are unconditionally monotonic.

4.1 Small Sample Properties

Many researchers are faced with data sets of relatively small sample size. Moreover, it may be
difficult and costly to collect additional data. Given this predicament, analysts are often interested
in how a particular estimator performs in small to medium-sized samples. With this concern in
mind, we report a series of Monte Carlo experiments where we set the number of observations at

levels consistent with the size of smaller data sets found in experimental and field work.
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Figure 2: Small Sample Monte Carlo Results. The plots display the distributions of the parameter
estimates for samples of size N=50 (light grey), N=100 (grey), and N=200 (black). In each case,

the true value of By, Yu, S1, and sy was one (or, equivalently, In(s1) and In(s2) were each zero.)
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For the Monte Carlo analysis, the ultimatum game in Figure 1 was used as the data generating
process. For a given observation, the value of the disputed good, ), was drawn from a uniform
distribution on [0, 10]. The public reservation values consisted of a single variable for each player,
x for player 1 and z for player 2, with associated parameters 3, and ~,, respectively, set to one.
r and z were drawn from i.i.d. uniform distributions on the interval [0,6].!° Lastly, the private
information for players 1 and 2, €; and es, respectively, were drawn from i.i.d. logistic distributions,
with variance parameters s; = 1 and so = 1, respectively. Based on this, player 1 determines his
optimal offer y using Equation 6 and the constraint 0 < y < . Given that, player 2 makes a
decision by comparing y to her reservation z+, + €2. The data for a given observation then consists
of Q, Y, daccept, T, and z.

The Monte Carlo analysis was conducted for three sample sizes: N=50, 200, and 500 obser-
vations. In each iteration of the analysis, a sample was generated (as detailed above) and the
logit ultimatum estimator was used to recover estimates of 3, Yu, S1, and sa. This procedure was
conducted 5000 times for each sample size, each time saving the parameter estimates.

Figure 4.1 depicts the distribution of the estimated model parameters for N=50, 200, and 500
sample sizes. The results are encouraging. Sample densities seem to approach normal distributions,
even with as few as one or two hundred observations. As expected, the smaller the sample size the
higher the variance of the estimated values. Somewhat surprisingly, though, the bias is relatively
small for even very small sample sizes. For example with N = 50, the distribution of 3, and Yu
are already normal with means incredibly close to the population equation values. Only in the
estimates of the variance parameters (In(s;) and In(sz)) do we pick up meaningful bias, which
disappears for N near 200. This suggests that the statistical bargaining model can be usefully

applied to reasonably small data sets.

4.2 Bias in Alternative Methods

When analyzing bargaining data — whether offers or acceptances — it is currently common prac-
tice to employ standard techniques, such as OLS, FGLS, Tobit, Logit, and Probit. Although it is

beyond the scope of this paper to analyze all the reasons for this, we highlight one very sensible

10As we will discuss in the next section, a larger reservation value makes censoring more likely (all else equal). We

chose this value to represent an average or middle case.
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and theoretically motivated argument. This argument suggests that a structural statistical model
need not be derived directly from a formal theoretic model. Rather, if one can demonstrate mono-
tonicity through comparative statics analysis, then off-the-shelf parametric models with a linear
link function should be perfectly appropriate for data analysis (Carruba, Yuen and Zorn 2007).
As we demonstrated in Section 3, the optimal offer is unconditionally monotonic in any regressor
that appears in only one player’s reservation value. If we refrain from including regressors that
are common to both players’ reservation values, we then have an ideal case to assess the above
argument, as well as the use of standard models in general.

In order to investigate the possibility of bias in standard techniques, we conducted a second
set of Monte Carlo simulations, similar to the first, but with a larger sample size and, of course,
estimating alternative models. For this set of Monte Carlo experiments, the data generating process
was the same as in Section 4.1 (e.g., B, = Y = $1 = s2 = 1), but with the following exceptions. In
each iteration of the Monte Carlo simulation, N=1000 observations were generated for the sample.
We noticed that the larger the maximum size of the observable reservation value, the greater
the number of the observations that were censored by the bargaining constraint. Therefore, to
assess the effect of censoring on the inferences from the traditional models, separate Monte Carlo
experiments were conducted for each value of Max R € {2,4,6,8,10}, in which = and z were drawn
from U[0, Max R].

In each iteration of the Monte Carlo analysis, the full logit ultimatum model was estimated
for comparison with three alternative models. For player 2’s acceptance data, a traditional logit
model was estimated by regressing ducceps On the offer y and player 2’s reservation variable z, with
associated parameters w; and -, respectively. For the offers data y, two models were estimated.

The first was a Normal model of the form
y = consty + BT + Yz + 0,Q + €,

estimated via maximum likelihood estimation.!! The variable () was included because the offer will
depend not only on x and z, but also on the size of the prize. In addition to the Normal model,
we estimated the Tobit model

y = consty + Bx + vz + €

"The Normal model will produce results essentially identical to OLS. We chose an MLE-based Normal model

rather than OLS for a more straightforward comparison with the Tobit model.
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Max  Number | Ultimatum Logit

R Censored Bu Yu w; o

2 253 .99 99 | 1.00 -—1.00
(06) (.02) | (07)  (.10)

4 331 1.00 1.00 | 1.00 —1.00
(03)  (.02) | (07)  (.07)

6 421 1.00 1.00 | 1.00 —-1.01
(02)  (.02) | (08)  (07)

8 511 .99 99 | 1.00 -1.01
(02)  (.02) | (08)  (07)

10 593 1.00 1.00 | 1.01 -1.01
(02)  (02) | (09)  (.08)

Each set of results is based on 2000 Monte Carlo iter-
ations, each with samples of size N=1000. The mean
parameter estimate is shown on top. The standard
deviation is shown below in parentheses.

Table 1: Monte Carlo Results for Ultimatum and Logit Models.

with censoring below at zero and above at . After estimating each model, the parameter estimates
were saved. This was repeated for 2000 Monte Carlo iterations to form a density of the estimates.

Tables 1 displays the results of the logit ultimatum model (“Ultimatum”), estimated using
the full set of data, as well as the results of a simple logit model estimated using only player 2’s
data. The table is divided into five sections, one for each value of Max R. For each value of Max
R, the average number of censored observations is displayed (out of 1000 observations for each
sample). Each cell in the table reports the mean (top) and the standard deviation (bottom) of the

distribution of the estimates for each group of 2000 Monte Carlo iterations.
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As is clear in Table 1, ﬁu and 4, are recovered by the logit ultimatum model on average, and the
standard deviations of the estimates are small. Moreover, the estimates continue to be unbiased and
have low variance, even as the censoring exceeds half of the observations on average per iteration
(i.e., as Max R increases to 8 or 10).

It is also clear that a properly specified logit can be used alone to assess the effect of offer size
and substantive regressors on the success or failure of bargaining. In fact, the logit’s estimates
are consistently close to the true values. The negative sign on 4; is correct and simply a result
of specifying the regression equation as w;y + ;2. As before, increased censoring due to Max R
does not affect the consistency of the estimates. Not surprisingly, the effect of z is estimated more
precisely when all of the data is used with the “Ultimatum” model, rather than when limited only
to data on player 2’s decision.

Table 2 displays the results of using the uncensored Normal model or a Tobit model to analyze
the relationship between the regressors and the size of the offer y. First consider the uncensored
Normal model. A number of scholars, looking at the continuous nature of the offer variable, have
chosen to use OLS and FGLS to analyze such data.'? For the uncensored Normal model, a constant

was estimated, along with (3, and 7, (the effects of z and z, respectively), an effect 6,, for the size

2

of the prize (), and the estimate of the variance o7,.

The uncensored Normal results highlight two potential problems with using OLS on bargaining
data. First, the estimates of the parameters change significantly as the number of censored obser-
vations increases. In particular, 4, ranges from .09 to .47. Second, every estimate looks as though
it is a very good estimate, i.e., the standard deviation of the density is small.

It is already well known, however, that censoring can significantly affect estimates in a tradi-
tional OLS model. Moreover, a sophisticated empiricist would likely conclude that the strategic
process would, in some way, censor the observed data. Therefore, she may account for this in her
estimation, and analyze the data using a Tobit model, which is censored here above at () and below
at 0.

The Tobit results are also found in Table 2. As in the Normal case, the standard deviations of

the estimates are small, leading one to believe the estimates are, in some sense, good. Perhaps most

128ee Bothelho, Harrison, Hirsch and Rustrém (2005) and Henrich, Boyd, Bowles, Camerer, Fehr, Gintis and
McElreath (2001).
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Max Number Normal Tobit

R Censored | Const,, Bn An én 6% Const; Bt o 6}2

2 253 —.42 —.25 47 .29 .29 .92 —.35 56 1.69
(05)  (03) (03) (01) (02) | (11)  (07) (07) (.08)

4 331 —.49 -.31 .35 .36 .58 1.13 —.48 43 3.23
(07)  (.02)  (02) (01) (03) | (15)  (.05) (.05 (.17)

6 421 —.22 =34 23 38 91 1.52 —-.59 .31 493
(09)  (.02)  (02) (01) (04) | (18)  (.05)  (.04) (.27)

8 511 .19 -.34 15 .35 1.17 1.92 —-69 .22 6.32
(09)  (.02) (02) (01) (06) | (21)  (.04) (.04) (.39)

10 593 .53 -30 .09 .31 1.33 2.29 —-0.78 .16 7.34
(09)  (01) (01) (01) (07) | (23  (04) (04) (51)

Each set of results is based on 2000 Monte Carlo iterations, each with samples of size N=1000. The
mean parameter estimate is shown on top. The standard deviation is shown below in parentheses.

Table 2: Uncensored Normal and Tobit Regression Models
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interesting, Table 2 shows that the Tobit model does not adequately control for the censoring in the
bargaining offers. In particular, the parameter estimates change as the number of censored cases
increase. The estimates for Bt change from —.35 to —.78, an increase in magnitude of 122 percent.
Similarly, the estimates of 4; change from .56 to .16, a decrease in magnitude of 71 percent.

Because the Ultimatum, Tobit, and Normal models are all based on different structural and/or
distributional assumptions, it is important to compare their estimated conditional expectations as
a function of z and z. Figure 2 displays the expected offer for four configurations of z and z. In
each panel, either x or z is held constant at 0 or 10 and the other is varied from 0 to 10. The
conditional expectations are based on the parameter estimates where Max R = 10 — i.e., allowing
for any observed reservation level between 0 and 10. The solid, dashed, and dotted lines correspond
to the expected offers from the Ultimatum, Tobit, and Normal models, respectively.

As Figure 2 shows, the Tobit model (which allows for censoring) and the Normal model (which
does not) are very similar, not only in terms of the effects of x and z on the expected offer, but
also on the size of the offer itself. Figures 2(a)-2(d) also suggest that we can characterize when the
Tobit and Normal models will be closer to or diverge from the ultimatum model. Consider first
Figures 2(a) and 2(d). These are situations where increasing a player’s reservation level has little
effect on the offer. For example, in 2(a), player 2’s observed reservation level is at the minimum
(z = 0). In this case, player 1 knows that player 2 is likely to accept if she makes even a small
offer. When her own reservation is near zero, player 1 will give up a small amount of the prize.
However, as player 1’s reservation (x) increases, she offers less. In 2(d), player 1’s reservation is at
the highest level (x = 10), making her unwilling to give up much of the prize. Regardless of player
2’s reservation level, player 1 makes a negligible offer. In these two cases — when the reservation
level has little effect on the offer — the Tobit and Normal models are fairly close approximations
of the ultimatum model.

Now consider Figures 2(b) and 2(c). In these cases, the ultimatum model shows that a change
in the observed reservation level has a substantial effect on the offer. For example, in Figure 2(b),
player 1 knows that player 2 has a very high reservation (z = 10). Therefore, the size of the
offer will depend on player 1’s reservation level. When player 1’s own reservation is near zero,
she is willing to offer almost all of the prize. However, when player 1’s reservation is near the

maximum, her offer will be negligible. In Figure 2(c), player 1’s reservation is assumed to be at
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the minimum (z = 0). In this case, player 1 will take just about anything. Therefore, as player
2’s reservation level increases, player 1’s offer also increases. In these cases, Tobit and the Normal
model underestimate the effect of x and z — the slopes of their lines are attenuated. Moreover, the
Ultimatum model allows for much larger offers, while the maximum offers in the Tobit and Normal
models are only about 4.

Finally, consider the question of whether player 2’s reservation z has a substantively large effect
on the offer. Figures 2(c) and 2(d) suggest that if one were to estimate the Tobit or Normal
models, one would infer that player 2’s reservation z does not have much of a substantive effect
(however statistically significant) on the offer. By construction, we know this is incorrect. Indeed,
the ultimatum model in Figure 2(c) shows that player 2’s reservation value can have a large effect
on the expected offer.

From these simulations, we see that the appropriate statistical method can depend on the
question one wishes to answer. In this case, the logistic regression proved to be an acceptable —
although slightly less efficient — method for investigating how different variables affect bargaining
failure, given data on the offers. This is not terribly surprising, since the logit model is the right
structural model for player 2’s decision.'® However, if we are interested in saying something about
how substantive variables affect the kind of bargain that is struck — and, in particular, the size
of the offer — then traditional techniques are inappropriate. The Monte Carlo experiments show
that (1) these techniques produce incorrect estimates of § and ~, (2) that the estimates change as
a function of the distribution of the reservation values of the players, and (3) that inferences based
on the marginal effects will at times be misleading. Since we cannot know, ex ante, the empirical
distribution of the reservation payoffs, independent of the estimation of B and 4, OLS and Tobit
results for real world data are not reliable estimates. Moreover, this analysis was conducted for
a model where all relationships were unconditionally monotonic. Given the specific structure of
the strategic interaction in the ultimatum game, researchers should be wary of using off-the-shelf
parametric methods, unless those methods are demonstrated to be consistent with the assumptions

of the structural model.

131f, on the other hand, we had reason to believe that player 1’s private information was correlated with player 2s,
then using the sample of bargaining success/failure data alone would induce a Heckman-like selection bias. Similarly,
if the interaction contained multiple stages and player 2’s decision was based on expectations of what player 1 might

offer in the future, then the logit estimates would likely suffer from a functional form misspecification bias.
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5 AN APPLICATION TO EXPERIMENTAL BARGAINING DATA

Perhaps the most notable aspect of bargaining is its ubiquity in human interaction — and therefore
its widespread study across many disciplines. Everything from bargaining between multinational
cooperations and states over terms of foreign investment, to the resolution of territorial disputes,
to economists and anthropologist’s interests in how social and personal characteristics affect the
“rational” behavior of individuals, has been studied in the context of bargaining models. Here we
analyze a data set on experimental ultimatum games conducted by Bothelho et al. (2005). Their
work and the experimental data they present allows us to illustrate the substantive differences
between using our logit bargaining estimator versus OLS.

In the ultimatum experiments that generated this data, the researchers sought to isolate the
effects of demographic variables on the bargaining process. They start from the widely known

7

experimental observation that, when people “play” the ultimatum game, they do not play the
(complete information) game’s subgame perfect Nash equilibrium. In particular, ultimatum exper-
iments consistently show that proposers giving receivers larger shares of the pie than is predicted
by strict income maximizing behavior. In a number of previous studies, most noticeably Roth,
Prasnikar, Okuno-Fujiwar and Zamir (1991) and Henrich et al. (2001), economists and anthropol-
ogists have joined together to conduct experiments in various countries. They found that, not only
do people not play the subgame perfect Nash equilibrium, but there also appears to be systematic
differences in the way people play the game across countries and cultures.

Bothelho et al. (2005) enter the debate by claiming that variance across countries does not
necessarily imply a “cultural” or “national” effect. They correctly point out that these studies fail
to control for the potential effects of demographic variables. In their paper, they report on two sets
of experiments, one in the US (at the University of Southern California) and one in Russia (at the
Moscow Institute of Electronic Technology). In these experiments, the authors collect information
on the demographic characteristics of the players, and attempt to assess their influence on the
bargaining process.

For illustrative purposes, we replicate the FGLS random effects model used in Bothelho et al.
(2005, 357-358) Table 4B. Noting that the comparative static on X/ in the bargaining model
is linear, one might suspect that using a variant of least squares regression would produce the

same results as the estimation of the bargaining model. It turns out that, as Carruba, Yuen
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FGLS-RE MLE-RE 1 MLE-RE 2

Constant 36.62 36.62 36.35
(3.15) (3.03) (1.59)
US*Round?2 1.52 1.52
(2.25) (2.22)
US*Round3 .79 .79
(2.28) (2.24)
US*Round4 1.23 1.23
(2.25) (2.22)
US*Roundb 5.21 5.21 3.88
(2.25) (2.22) (1.74)
Russia 3.66 3.66
(4.49) (4.33)
Russia*Round2 1.88 1.89
(2.29) (2.25)
Russia*Round3 3.18 3.19
(2.29) (2.25)
Russia*Round4 4.59 4.61 3.11
(2.29) (2.25) (1.71)
Russia*Round5 2.27 2.27
(2.29) (2.25)
Russia*Male -11.05 -11.05 -5.30
(3.63) (3.47) (2.86)
US*Male -6.20 -6.21
(3.67) (3.51)
ou 8.98 8.51 9.31
(.94) (1.00)
Oe¢ 8.50 8.35 8.39
(.39) (.39)
P 53 51 55
(.06) (.06)
log-likelihood = -1076.75 -1082.55
AIC (df) = 2181.51 (14)  2177.09 (6)
N = 289 289 289

Dependent variable: Offer made by player 1. Note: A positive coefficient denotes
a positive effect on the expected offer. Standard errors are shown in parentheses.
Bolded coefficients are statistically significant at p < .05.
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and Zorn (2007) would claim, linear regression can “correctly” estimate the sign of demographic
effects, but these estimates are both unstable, systematically biased toward zero, and of varying
statistical significance. That is, the FGLS estimator used in this bargaining experiment estimates
the same marginal effects (coefficient signs) as the bargaining estimator, but the magnitudes are
systematically smaller. We also have varying degrees of statistical significance across these two
different models and it is not just that the bargaining estimator is making all estimated parameters
have lower or higher variances. Some variables become significant in the structural model while
others drop out. These varying degrees of significance have important substantive implications for
Bothelho et al.’s (2005) results. Analyzing the data with the bargaining estimator shows that there
is no uniform “national” effect on bargaining, but rather that many demographic characteristics,
from gender to occupation and nationality, combine to produce the differences we see in bargaining
behavior across countries.

Table 3 displays three variations of the random effects model. The first, labeled “FGLS-RE”,
is an exact replication of the feasible generalized least squares model with random effects as shown
in Bothelho et al. (2005, 357-358) Table 4B.'* As Table 3 shows, the FGLS-RE model suggests
that US participants were likely to increase their offers in round 5, Russian participants tended
to increase their offers in round 4, and that Russian males made substantially lower offers than
other participants. No other instances of learning, gender effects, or national effects were found.
Moreover, it is not clear at all what we should make of the round 4 and 5 interaction effects.

For comparison with subsequent models, the random effects model was replicated, but using
maximum likelihood estimation. These are shown in Table 3 as ”MLE-RE 1”. The results are essen-
tially identical to the FGLS-RE model. Finally, a reduced version of the model was run, including
only regressors that were statistically significant (at p < .05). As the MLE-RE 2 model shows, the
results are sensitive to regressor specification. In this case, neither of the Russia interactions are
statistically significant at standard levels. Moreover, a likelihood ratio test between MLE-RE 1 and
MLE-RE 2 supports (p=.17) the restrictions made in MLE-RE 2 (as do the AIC values, for that
matter). For comparison purposes we will refer back to the log-likelihood values and AIC (Akaike

information criterion) of these two MLE models.

1 Any differences in numbers are purely due to rounding for presentation. The results were exactly replicated using

Stata’s xtreg command.
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Table 4 about here

Table 4 displays the results for four regressions using the ultimatum estimator. Each model con-
sists of two sets of estimates: B associated with player 1’s reservation and 4 associated with player
2’s reservation. To keep the analysis as similar to the original study as possible, we do not use the
offer acceptance data by player 2 in our ultimatum estimator. Nevertheless, we hypothesized that
learning and /or demographics might affect player 1’s expectations concerning player 2’s reservation
value. Therefore, in some models, we included (Z) variables for player 2. It is important to note,
though, that the Zv terms here reflect player 1’s expectation concerning player 2’s reservation.!®

The model labeled “Ultimatum 1”7 displays the regression results when we include all the vari-
ables originally employed in the Bothelho et al. (2005, 357-358) Table 4B analysis. These results
show no learning effects — only strong baseline reservation values (i.e., the constant terms), as well
as national*male interactions. In particular, being male raises the proposer’s reservation value.
Moreover, Russian males have higher reservation values than do US males. Interestingly, there are
no learning or national /gender effects for player 1’s expectation about player 2’s reservation value.

Because the effect on the offer (rather than the reservation value) can be a bit more complicated
to interpret and because the variables appear to have no effect on player 2’s reservation value, we
estimated a reduced version of the model, with regressors only in player 1’s utility. The results of
this model are shown in the “Ultimatum 2” column. As one can see, the results are substantively
the same as for the Ultimatum 1 model. The reduced Ultimatum 2 model is also supported over
the Ultimatum 1 model, whether one examines the AIC scores or conducts a likelihood ratio test
(p=.91). Therefore, Proposition 2 tells us that we can interpret the regressors affecting player 1’s
reservation value as having an unconditionally monotonic opposite effect on his expected offer: in
this case, males are expected to make lower offers and Russian males are expected to make lower
offers than US males. Both Ultimatum 1 and Ultimatum 2 models have higher log-likelihoods and
lower (i.e., better) AIC scores than the random effects models in Table 3, suggesting a better fit to
the data.

Given the notable differences between the random effects models in Table 3 and the Ultimatum

1 and 2 models in Table 4, we conducted additional ultimatum regressions employing other plausible

15 Although 2 is technically identified in this model and can be recovered in monte carlo analysis, we found it to

be very fragile here, given the number of observations. Because of that, we have normalized ¢2 = 1.
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variables in the Bothelho et al. (2005) data. Ultimatum models 3 and 4 in Table 4 display these
results. Ultimatum model 3 suggests that, again, Russian males have a higher reservation value,
as do US males, with Russian males having a higher reservation relative to US males. However,
we see here that Slavic participants, as well as science and business majors, tend to have a lower
reservation value. As before, none of the new variables affect player 1’s expectation concerning
player 2’s reservation. Moreover, when we restrict the regression to include only regressors for
player 1, not only are the results (Ultimatum 4) substantively the same, but the AIC and likelihood
ratio test (p=.78) support the restrictions in the Ultimatum 4 model. Because of that we can again
interpret the effects of player 1’s variables as having an opposite effect on the offer: Russian and
US males make lower offers, whereas Slavic proposers and science or business majors make higher
offers. Finally, the log-likelihood and AIC values indicate that these two models fit the data better
than the original random effects model or either of the previous ultimatum specifications, even
accounting for the number of parameters estimated.

In sum, the ultimatum estimator produces substantively different results and better fits the
data than does the OLS/Normal variant. Moreover, where the OLS/Normal variant was sensitive
to regressor specification, the ultimatum estimator was much more robust in that respect. Finally,
and perhaps most interestingly, the Ultimatum 4 model, which is supported over the others via
log-likelihood tests and AIC scores, is exactly the specification that Proposition 2 would tell us
has unconditional comparative statics relating offer size to regressors. Yet, even in this case, the

OLS/Normal models produces very different statistical and substantive inferences.

6 CONCLUSION

This manuscript derives a statistical estimator that can be used when the data generating process
is best described as an equilibrium to an ultimatum bargaining game. The model is shown to have
a number of nice properties. It allows the analyst to estimate, under the assumptions of the theory,
players’ utility functions and equilibrium quantities of interest—such as how equilibrium offers and
the probability of bargaining failure react to changes in the independent variables. Monte Carlo

experiments show that substantive inferences regarding the effect of variables will be different if this
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data generating process is ignored in the process of estimation. We also show that the statistical
bargaining model allows the analyst to estimate the variance of the underlying logistic distribution
of errors and that the estimator is well behaved in small samples.

Furthermore we can compare this model to other likelihood modes often used by analysts. First
we see traditional logit models work well to answer some questions, particularly about bargaining
failure, if properly specified. That is, in a take it or leave it setting the logit model is the right
structural model. Second, a criticism of structural estimation in political science has been that it is
hard to deal with theories, or data generating processes, where players choose from more than two or
three alternatives. The logit ultimatum model also shows that the structural estimation approach
is not limited to games where players have finite action paces. In particular, there are number of
games — such as the Romer-Rosenthal setter model and the Rubenstein bargaining model — that
may be estimable in similar ways. Finally, the broad interest in bargaining games leaves open a
number of substantive areas where this estimator can be applied. From lab experiments to the
study of territorial disputes, a simple bargaining framework underlies many theoretical arguments.
The model described above allows analysts to obtain statistical estimates a step closer to theory

and open up new possibilities for testing hard to operationalize hypotheses.
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Ultimatum 1

Ultimatum 2

Ultimatum 3

Ultimatum 4

Lwa @4 WA @4 WA @4 w3 @4
Constant 58.02 47.56 53.79 47.58 68.69 47.69 68.14 47.56
(3.67)  (.40) (1.56)  (.14) (4.21)  (.78) (4.16)  (.14)
US*Round2 -1.83 .02
(4.55)  (.50)
US*Round3 -.07 .07
(4.40)  (.58)
US*Round4 -.66 .05
(4.40)  (.54)
US*Roundb -7.69 -.12
(4.53)  (47)
Russia -2.96 .06
(5.09)  (.62)
Russia*Round2 -3.33 -.10
(4.35)  (.57)
Russia*Round3 -6.29 =12
(4.38)  (.54)
Russia*Round4 -7.97 -.16
(4.35)  (.54)
Russia*Roundb -3.59 -.14
4.17)  (.60)
Russia*Male 16.22 34 12.96 19.21 44 17.96
(2.82)  (.34) (2.29) (2.63)  (.33) (2.48)
US*Male 9.66 .19 11.61 9.72 .23 9.36
(2.89)  (.33) (2.41) (2.85)  (.32) (2.80)
White -6.26 -.05 -6.056
(3.54)  (.64) (3.53)
Slavic -8.24 -.23 -7.23
(2.96)  (.27) (2.78)
Science Major -12.69 -.20 -11.74
(3.86)  (.49) (3.71)
Business Major -6.96 -.07 -6.36
(2.81) (A1) (2.74)
In(oy) | 2.21 2.23 2.19 2.19
(.06) (.06) (.06) (.06)
log-likelihood = -1014.82 -1020.85 -1008.47 -1010.07
AIC (df) = 2077.65 (24) 2049.71 (4) 2044.94 (14) 2036.15 (8)
N = 289 289 289 289

Dependent variable: Offer made by player 1. Note: A positive coefficient denotes a positive effect on that
player’s reservation value. See Proposition 2 for the expected effect on the offer. Standard errors are shown
in parentheses. Bolded coefficients are statistically significant at p < .05.

Table 4: Ultimatum Regressions




A  ANALYTIC DERIVATIONS

First a useful definition.

Definition 1. A continuously differentiable function f : R — R™ is log-concave on an interval

(a,b) if and only if (In f(z))” <O0.
Also note the following useful fact from calculus.!®

Fact 1. If a continuously differentiable function f : R — R™ is log-concave on an interval (a,b),

then ’;((;)) is a non-increasing function of x € (a,b)
Proof. The function f is log-concave if and only if, for all = € (a,b),

(nf@)) = -4 <o (A1)

O

Proposition 1. If F,, is log-concave, then there exists a unique perfect Bayesian-Nash equilibrium

to the statistical ultimatum game as described above.

Proof. The proof of this result is a straight forward construction of the equilibrium. It is a simple
extension to types drawn from R of the result in Fearon (1995).

That player 2 rejects if and only if y < Ry + €2 is immediate from sequential rationality and,
as fo is continuous y = Ry + €9 with probability zero, without loss of generality we can assume
that player 2 accepts when she is indifferent between a settlement and disagreement. Then, in any

equilibrium player 2 plays the cutpoint strategy:

accept if y > Ro + €9
s2(y, €2) =
reject if y < Ry + €.

Note also that the Pr(accept|y) = Pr(y > Rs + €2) = Pr(e2 < y — Rs), and Pr(es < y — Ry) =
Fe, (y - R2)’
Now, assume F¢, is log-concave and consider the optimization problem for player 1, given player

2’s strategy. His expected utility for an offer y is:

EU1(?J,Q) = Fez(y - R2) ’ (Q - y) + (1 - Fez(y - R2)) ’ (Rl + 61)' (A_2)

6For a paper on log-concave functions and their applications, see -Bagnoli and Bergstrom (2005).
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Differentiating shows that Fu(y)’ is positive when

0< fez(y - R2)(Q - y) - Fez(y - R2) - fez(y - R2)(R1 + 61)7

which implies
sz (?J - RZ) > 1
Fo(y—R) ~ Q—-y—Ri—e

By Fact 1 the LHS is non-increasing and, by inspection, the RHS is strictly increasing in .

(A-3)

Now if equation (A-3) holds evaluated at y = @, then

fEQ(Q - RZ) 1
Fe,(Q — Ry) ” —Ri— e (A-4)

So, as we move from y = @ to y < @ the LHS is non-decreasing and the RHS is strictly

decreasing. Therefore, the derivative of Fu;(y) is positive over the entire interval [0, Q] and y = Q

is the optimal offer when

Fe,(Q — Ry)
6 < —Ry — 22— = A-5
! ! fez (Q - RQ) ( )
Conversely, differentiation shows that Fu(y)’ is negative when
0> fe,(y — R2)(Q —y) — Fey(y — R2) — feo (y — R2)(R1 + 1),
implying
fEQ (y - RZ) 1 (A-6)

Fo(y—Ry) Q—-y—Ri—e’
Again, Fact 1 implies LHS is non-increasing. Now if equation (A-6) holds evaluated at y = 0,
then

fEQ(_R2) 1
FEQ(_R2) Q_Rl_"fl.

So, as we move from y = 0 to y > 0 the LHS is non-increasing and the RHS is strictly increasing.

(A-7)

Therefore, the derivative of Fuj(y) is negative over the entire interval [0, @] and y = 0 is the optimal

offer when

FE2(_R2)
€1 > Q — Ry — m (A—8)
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It is clear from an examination of (A-5) and (A-8) that some times neither equation is satisfied.

To see this note that,

F€2(Q_R2) F€2(_R2)

— Ry — <Q-R — 22—, A-9
7. @- ) ey (49

Multiplying through by -1 and taking the inverse of each side, we get
o @=Ry) __ fo(-Ro) (A1)

Fez (Q - RQ) N FE2(_R2) - Qfez(_R2) '
At @ = 0 the LHS and RHS are equal. However as () increases the LHS is non-increasing by Fact

1 and the RHS is strictly increasing. Thus there are always €; such that (A-5) and (A-8) cannot
hold, given our assumption that ¢ > 0.
When neither (A-5) nor (A-8) hold, then for some (possibly multiple) y € [0, @], the derivative

of Eui(y) is zero, implying

fEQ (y - RZ) _ 1
Fo(y—R) Q-y—Ri—«
Since the LHS is non-increasing on [0, Q] and the RHS is strictly increasing on the same interval,

(A-11)

equation (A-11) can have at most one solution. Call this offer y* and note that it implicitly solves,

Fe,(y" — Ra)
sz (?J* - RQ) ’

We now demonstrate that y* maximizes player 1’s expected utility. Obviously, since Euq(y) is

Y'=Q—-R1—e — (A-12)

continuous for every €7 on the interval, the utility maximizing offer exists and must be a critical
point, like y* or a boundary point. If neither (A-5) nor (A-8) hold, then there are two cases. First,
if one of the end points is the unique solution to equation (A-11) we are done. Second, if y* is
interior the derivative of Fuy(y) at y = 0 is positive and Euy(y) at y = Q is negative by (A-5) and

(A-8). Thus the interior critical point is a local and global maximum.

B COMPARATIVE STATICS FOR THE OPTIMAL OFFER

Recall from Equation 2 that player 1’s unconstrained optimal offer is

Foy" — Ry)

Y'=Q—-—R —e — ———".
' ' fez(y*_RZ)
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We are interested in how changes in observable reservation components R; and Ry change the

optimal offer. First, let us specify the reservation utilities with regressors x, z, and v as follows:

Ry =[x+ By

Ry = vz+mv

This specification allows us to characterize the comparative statics for elements that are unique to

each player (e.g., z and z), as well as those that are shared (e.g., v). Next, define

_ Fe,(z)
fer ()

Case 1: 8, = v, = 0. We first consider the case where Ry and Ry share no common regressors.

By the Implicit Function Theorem we can express the first derivatives of y* as

dy* 1 - _
dr [1 iy — Z%J (=Fz) (A-13)
dy* [ m/(y* —27) _

dz [1 +m/(y* — Z’Yz):| (A-14)

Because m/(x) > 0 by log-concavity, it follows that

sign(dy*/dx) = sign(—p;)

sign(dy”/dz) = sign(7z)

Thus, the unconstrained optimal offer y* is unconditionally monotone in x and in z. For 3, > 0,
the unconstrained optimal offer decreases monotonically in z. For v, > 0, the unconstrained optimal
offer increases monotonically in z. Because the constrained optimal offer has a floor (zero) and a
ceiling (@), the constrained optimal offer is weakly monotone in z and in z.

Case 2: B, # 0,7, # 0. We next consider the case where Ry and Ry share a common regressor v.
It is easy to check that sign(dy*/dx) = sign(—/,) and sign(dy*/dz) = sign(~,) as before. However,
the derivative with respect to v is

dy* 1 m!(y* — 27, — vy)
_ —B, . A-1
o 1+m'(y*—z%—v%)]( By) + [1+m,(y*_z%_v%) ¥ (A-15)

As Equation A-15 shows, v has countervailing effects on the optimal offer, due to the fact that it

appears in both players’ reservation values. Because the denominator is positive in both terms on
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the RHS, it follows that sign(dy*/dv) = sign [y,m'(y* — 277, — vy,) — By] . Therefore, the optimal
offer increases in v when v,m’(y* — 2y, —v7y,) > (3, and decreases in v when vy, m/(y* — 27, —vvy,) <
By. Notice, however, that m/(y* — 27, — v7y,) changes with v. Therefore, we are not assured of
monotonicity in v unless we can show the sign remains constant for all admissable values of v
— and, indeed, this will not always be the case as one can construct counter-examples when the

distribution of errors is logistic. [

C  DERIVATION OF f,(y)

C.1 Method of Transformation

We assume the distribution of ¢; is logistic with scale parameter s;. Similarly, the distribution of
€9 is logistic with scale parameter so. We have confirmed that the derivative of y* is single signed
(< 0), so we can apply the method of monotonic transformation to obtain the distribution of y*.

That is, with y* = h(e) and ¢ = h=(y*):

) = fatnm | A (A-16
Solving Equation 5 for €; produces
a=hy ) =Q -y — XB— s [1 + e@*—ZW/SZ] (A-17)
Taking the derivative of h~!(y*) with respect to y* gives
d(h_l(y*)) _ (y*—zv)/s2
7@* =— [1 +e ] . (A-18)

Substituting this into A-16 yields

—[hfl(y*)]/sl

e *

R = -1 _|_e(y —Z7)/s2 A-19
fy (y ) 51 {1+e—[h71(y*)}/81}2 |: :| ( )

—(Q—y* =X B—s2 (14" =2N/52) | /5
_ | ( — ) 5 {1 +e(y*‘ZV)/”] (A-20)
s1 {1 1 e[y =XB—ss(14ev~ Wsz)]/m}
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